
AEDSR-TR- TB" 12 50

CriU-CS-78-114

A Production System Version
of the Hearsay-II

Speech Understanding System

Donald McCracken

April 1978

6£P

DEPARTMENT
of

COMPUTER SCIENCE

Of

Carnegie-Mel Ion University

Approved for public release;
istrlbution uollmlted.

■ ■ 3^ 11

(fl) Rofffi/ DOCUMENTATION PAGE

2 5 j3(/
GOVT ACCESSION NO

4 TITLE (und Subllll»)

PRODUCTION JJRSTE.M V.£RSI0N OF THE HEARSAY-
;H UNDERSTANDING SYSTEM,.

Rl \D INSTRUCTIONS
i:i'.l wK'li COMPLETING FORM

3. RECIPIENT'S CAT ALOG NUMBER

Jh^TYPE OF REPORT a PERIOD COVERED

/'/^Interim H^ pj^

7. j^UTHORfs)

naId IMcCracken / dM
9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

X"

II. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, Virginia 2220$

(li

PEFU£LRM.lNja ORG. REPORT* N UM BER

i£ttMU-CS-78-1l4 ^-
CÖNTRACT OR GRANT NUIv^»«-Hf*>' ..,

44620-73-C-OO74 Kord***- i
10. PROGRAM ELEMENT. PRAj-ECT/TASIIt ^

AREA ft WORK UNIT NUMBERS

61101E
A02466/7

75-/-//j

U. MONITORING AGENCY NAME a ADDRESSfi/ dlllerent Irom Controlling Office)

Air Force Office of Scientific Research/NM
Boiling AFB, Washington, DC 20332

REPORT DATE

April 1978
■ +WMBER OF PAGE»

121.
15. SECURITY CLASS, (of this report)

UNCLASSIFIED
ISa. DECLASSIFI CAT I ON/DOWN GRADING

SCHEDULE

16. DISTRIBUTION ST AT EM EN T fo/ (/i/s Reporf;

Approved for publ ic__rej_ease; distribution unlimited.

yf, DISTRIBUTION ST ATEM ETTrT^'TelfEsFracreriTe'/Sc/ In Block 20, If dlllerent Irom Report)

i^—— —. A_- • ■

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and Identify by block number)

20. ABSTRACT (Continue on reverse side It necessary and Identify by block number)

A prime candidate organization for large, knowledge-rich systems is that
of a production system (PS). PSs are rule-based architectures that have been
used successfully for tasks ranging from models of human behavior to large
application systems in chemistry and medicine, to classical artificial
intelligence programs.

The question studied by this thesis is whether a PS architecture (PSA)
helps or hinders with respect to implementation problems encountered by

DD , ™RM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

U^/) Q /^SEOTd^ CLASSIFICATION
^yv'

OF THIS PAr.f- ,-H7i(.n Del'i F'

BEST
AVAILABLE COPY

20. Abstract

Hearsay-ll (HSIl), a large artificial intelligence system for understanding
speech, developed at Carnegie-Mellon University (CMU). This is an important
question because many of these problems, such as efficiency, compensating for
error, controlling directionality, augmenting knowledge, and analyzing perfor-
mance, have become limiting factors for performance.

To obtain an answer to this question, an actual system (call HSP, for
"HearSay-Product ion system") was implemented on C.mmp, the CMU mul t i-mini procfts^c-i
with a portion of the HSIl speech knowledge translated into productions. An
early decision was made to maintain close comparability of HSP with HSIl rather
than explore the more general question of how to best understand speech with a
PS. Two knowledge-source (KS) programs from a complete HSIl configuration were
completely translated and run in HSP, and these provide a basis for some
detailed comparisons between HSIl and HSP. Ten other KSs v/ere translated, and
their static structure provides supporting evidence.

The HSP architecture was heavily influenced by HSIl, itself similar to a
PSA, and by a general PSA design philosophy manifested at CMU in systems such
as PSG, PSNLST and OPS. HSP has several novel features when compared with
these three relates PSAs, and thus makes a minor contribution in the area of
PSA des in i.

'.he main results of the thesis are presented as a list of 17 assertions
organized into five categories: Representation and Architecture, Space
Efficiency, Time Efficiency, Parallelism, and the Small Address Problem, The
HSP architecture is found to be adequate for representing the HSIl speech
knowledge, even though HSP is simple compared to other PSAs.

Space and time efficiency are another matter. There is a moderate space
penalty for representing declarative HSIl knowledge ^s HSP productions, which
is cause for concern since HSIl contains many large declarative knowledge
structures. Even more serious is the substantial space inefficiency of the
global HSP working memory, since it must be used in place of large, highly
optimized local working memories typically used by HSIl KSs.

HSPs lack of local working memory results also in a large loss of time
efficiency because of heavier use of data-directed control and greater creation/
read/write costs in its global Working Memory. In the two-KS configuration
this loss is a factor somewhere in the range 6 to 36, but projecting to a full
KS configuration yields a much larger factor of 100 to 3000 since many of the
KSs to be added make heavy use of local working memory and control (in their
HS I I form).

Some of the time efficiency handicap is made up through increased
para 1 lei ism of HSP over HSII . A source of para 1 lei ism not exploited by HSIl,
called intra-KS parallei ism, results from HSP's sma1ler knowledge unit size.
We estimate conservatively a half order of magnitude increase in parallelism
for a full KS configuration. It could be much greater than that if HSP,C

less powerful synchronization mechanisms turn out to be adequate with a rull
complement of KSs.

Finally, HSP is found to aid solution of the Small Address Problem, as it
exists on C.mmp, by making it easy to do overldying of both long-term
knowledge and working memory.

The thesis concludes with brief discussion of 9 important questions
which have emerged from the current study -- questions which must be
answered to complete the evaluation of a PSA for HSIl.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS P kr.FfWhxn D*(a fnlmttd)

CnU-CS-78-114

A Production System Version
of the Hearsay-II

Speech Understanding System

Donald McCracken

April 1978

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213

Submitted to Carnegie-Mellon University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

This research was supported by the Defense Advanced Research Projects Agency
under contract no. F4fl620-73-C-0074 and is monitored by the Air Force Office of

Scientific Research. A1R yoRCB OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TIULnSMITTAL TO DDC
This teobnlcal report has bösn royiowed and La
approved rcr pniilHi rfsleaae IA7? AFR 190-12 (7t).
Dtstrlbuti'j.i 1:3 unlimited.
A. D. ULI .
Technical Information Orflcer

Abstract

A prime candidate organization for large, Knowledge-rich systems is that of a
production system (PS). PSs are rule-based architectures that have been u^'i
successfully for tasks ranging from models of human behavior to large application systems
in chemistry and medicine, to classical artificial intelligence programs.

The question studied by this thesis is whether a PS architecture (PSA) helps or hinders
with respect to implementation problems encountered by Hearsay-II (HSII), a large artificial
intelligence system for understanding speech, developed at Carnegie-Mellon University
(CMU). This is an important question because many of these problems, such as efficiency,
compensating for error, controlling directionality, augmenting Knowledge, and analyzing
performance, have become limiting factors for performance.

To obtain an answer to this question, an actual system (called HSP, for "HearSay-
Production system") was implemented on C.mmp, the CMU multi-miniprocessor, with a
portion of the HSII speech Knowledge translated into productions. An early decision was
made to maintain close comparability of HSP with HSII rather than explore the more
general question of how to best understand speech with a PS. Two Knowledge-source
(KS) programs from a complete HSII configuration were completely translated and run in
HSP, and these provide a basis for some detailed comparisons between HSII and HSP. Ten
other KSs were translated, and their static structure provides supporting evidence.

The HSP architecture was heavily influenced by HSII, itself similar to a PSA, and by a
general PSA design philosophy manifested at CMU in systems such as PSG, PSNLST and
OPS. HSP has several novel features when compared with these three related PSAs, and
thus maKes a minor contribution in the area of PSA design.

The main results of the thesis are presented as a list of 17 assertions organized into
five categories: Representation and Architectura, Space Efficiency, Time Efficiency,
Parallelism, and the Small Address Problem. The HSP architecture is found to be adequate
for representing the HSII speech Knowledge, even »hough HSP is simple compared to other

PSAs.

Space and time efficiency are another matter. There is a moderate space penalty for
representing declarative HSII Knowledge as HSP productions, which is cause for concern
since HSII contains many large declarative Knowledge structures. Even more serious is the
substantial space inefficiency of the global HSP worKing memory, since it must be used in
place of large, highly optimized local worKing memories typically used by HSII KSs.

HSP's lack of local worKing memory results also in a large loss of time efficiency
because of heavier use of data-directed control and greater creation/read/write costs in
its global WorKing Memory. In the two-KS CO'- '"urafion this loss is a factor somewhere in
the range 6 to 36, but projecting to a full KS configuration yields a much larger factor of
100 to 3000 since many of the KSs to be added matMJ h«ftvy use of local working memory
and control (in their HSII form).

Some of the time efficiency handicap is made up through increased parallelrtm of HSP

/

over HSII. A source of parallelism not exploited by HSII, called intra-KS parallelism, results
from HSP's smaller Knowledge unit size. We estimate conservatively a half order of
magnitude increase in parallelism for a full KS configuration. It could be much greater than
that if HSP's less powerful synchronization mechanisms turn out to be adequate with a full

complement of KSs.

Finally, HSP is found to aid solution of the Small Address Problem, as it exists on
C.mmp, by making it easy to do overlaying of both long-term knowledge and working

memory.

The thesis concludes with brief discussion of 9 important questions which have
emerged from the current study — questions which must be answered to complete the

evaluation of a PSA for HSIk

*d

Table of Contents

1. Introduction

3.

1.1 The Speech Understanding Task 3
1.2 The Promise of Production Systems 6
1.3 Overview oi the HSII Architecture 8
1.4 The Systems Underlying HSP 11
1.5 Organization of the Thesis 12

The HSP Architecture 13
Production Memory 14

Working Memory 15

Conditions 15

Actions 18

Control 18

A Comparison of Representation in HSII and HSP 21

3.1 Long-Term Memory 22

3.1.1 Adequacy 23

3.1.2 Simplicity of the Language 24

3.1.3 Declarative Knowledge and Multiple Use 25

3.1.4 Space Efficiency 28
3.1.5 Knowledge Unit Size 33
3.1.6 Mixture of Condition and Action 35

3.2 Working Memory 35
3.2.1 Local 35

3.2.2 Global 36

3.3 Control 37
3.3.1 Low-level (Intra-KS) Control 38
3.3.2 High-level Control (Directionality) 38

Time Efficiency 41
4.1 Existing Efficiency Mechanisms 42

4.1.1 Production Memory Indexing 42
4.1.2 Explicit Working Memory Element References 43

4.1.3 Working Memory Indexing 44

4.2 Comparing HSII and HSP 45
4.3 Remaining Sources of Inefficiency in HSP 52

4.3.1 High Degree of Data-directed Control 53

4.3.2 Limited Local Working Memory 54

4.3.3 No Declarative Long -term Knowledge 58
4.3.4 Working Memory Searching 59
4.3.5 Redundant Condition Evaluation 60

Summary -&1 / f
i (0''"c:> '■ '

\ ■■■ . i '- -rinn

\ MÜS ;tion Dl
looc □ 1
1 uNWiNO'-T '■ '■

\ jusn ' .

BY
NSffi^'

■ \\

■i^d*""'^

5. Parallelism 63
5.1 The Sources of Parallelism 63
5.2 Timing Methodology 66
5.3 The HSP Simulator 67
5.4 Multiprocessing Overhead 71
5.5 Degree of Parallelism /4
5.6 Hardware Memory Interference 82

6. The Small Address Problem 87

7. Conclusion 91
7.1 The Assertions 91

Representation and Architecture 94

Space Efficiency 98
Time Efficiency 100
Parallelism 103
Small Address Problem 105

7.2 Summary of the Aspects Studied 105
7.3 Questions for a Continued Evaluation 107
7.4 Contributions 110

References 113

Appendix A: HSP Specifications 117

Appendix B: Sample HSP Productions 125

Acknowledgements

To Allen Newell, my principal advisor, for many years of patient
and understanding guidance.

To committee members Lee Erman and Victor Lesser for moral
support and many fruitful discussions of Hearsay-Il.

To David Klahr for his contribution of time and interest as the
"external" committee member.

To the Hearsay-II knowledge-source implementers, especially
Rich Smith and Jack Mostow, for aid in understanding their
creations.

To Raj Reddy and all members of the CMU Speech Group for
providing a stimulating environment to give my research
direction and meaning.

To the computer operations staff for endless hours of worry-free
computer usage.

To the C.mmp/Hydra project for adding spice to my life and
strength to my character.

To longtime compatriot George Robertson for his support in many
ways.

And finally to Marilyn and Stephen for the will to carry on.

V ;£•

^^

Chapter 1 Infroducfion Page 1

Chapter 1

Introduction

A prime candidate organization for large knowledge-rich systems is that of a
production system (PS) [Newell, 1973; Davis and King, 197-;; Waterman and Hayes-Roth,
19731. PSs are rule-based architectures that have been used successfully for tasks
ranging from models of human behavior [Newell and Simon, .972], to large application
systems in chemistry [Feigenbaum, Buchanan and Lederberg, 1971] and medicine
[Shortliffe, 1974], to general artificial intelligence programming tasks [Rychener, 1976].
The uniform rule structure of knowledge in PSs makes them particularly useful for tasks
requiring iterative upgrading of knowledge content.

The question studied by this thesis is whether a PS architecture (PSA) helps or hinders
with respect to problems encountered by Hearsay-II (HSII), a large artificial intellrgence
system for understanding speech, developed at Carnegie-K'sllon University [CMU Speech
Group, 1977; Lesser and Erman, 1977; Erman and Lesser, 1975; Lesser, Fennell, Erman and
Reddy, 1975]. This is an important question because many of these problems, such as
efficiency, compensating for error, controlling directionality, augmenting knowledge, and
analyzing performance, have become limiting factors. Alleviation of one or more of these
might clear the way for significantly better performance.

To obtain an answer to this question, an actual system (called HSP, for "HearSay-
ProHuction system") was implemented on C.mmp, the CMU multi-miriprocessor [Wulf and
Bell, 1972], with a portion of the HSII speech knowledge translated into productions. Two
knowledge-source (KS) programs from a full HSII configuration were completely translated
and run in HSP, and these provide a basis for some detailed comparisons between HSII and
HSP. Ten other KSs were translated, but with some simplifications and omissions, and were
never completely debugged and run. However, their static structure does provide
evidence for representation issues.

One promising remedy for the slowness of a system like HSII is the use of parallel
machine architectures, and so HSP was designed with parallelism in mind. Data on
processor utilization and overhead were obtained for HSP runs of the two-KS
configuration with up to ten processors on C.mmp, and the results compared with a
multiprocessor simulation of HSII [Fennell and Lesser, 1977]. In addition, an HSP simulator
was burlt to work from timings collected by HSP in uniprocess mode and predict processor
utilization with larger numbers of processors. The simulator was validated by comparing
with real HSP multiprocessor runs.

This f'iesis also aims to make contributions in the area of PSA design, since HSP has

[1] Ofhor example» are [Newell, 1973, KUhr, J973i Voun», 197a Mor»n, 1973; F»rl»y, 1974; WtUrmin, 1974;

Brood», 1975J. c [Ryeh»n»r, 1976) for • bri»» diteuiaion of BMH.

Page 2 Introduction Chapter 1

several novel features related to multiprocessing and the use of multiple, independent
sources of knowledge.

An early choice point in the research was whether to make HSP mimic HSII, or to break
free from HSII entirely. The determination to maintain comparability of HSP with HSII led to
the former, yielding an imitative style of study. This precluded many directions that might
have been followed if the focus had been on how best to understand speech with a PS, for
example, studies of knowledge augmentation or directionality/ A result of this decision is
that HSP fared badly in the comparison, though on the positive side we have shed light on
representation and efficiency issues in both HSP and HSII.

From the beginning it was recognized that an effort of the scope of this thesis had a
large number of associated risks:

This was a one-man effort, whereas HSII is the product of several tens of man-
years. Large amounts of HSII kernel and knowledge-source code had to be
penetrated and thoroughly understood to accomplish the translation.

HSII was undergoing rapid development during the period of the thesis work, so
that the foundation for translation was continually crumbling away. A good deal of
effort was wasted in trying to track the moving target, and in the end this was
given up as futile. Thus of the 12 KSs translated for HSP, only 5 still existed in the
final HSII version of September 1976.

The risk which turned out to be most damaging was the immaturity of the
underlying hardware and software: C.mmp [Wulf and Be!!, 1972] and its operating
system Hyd-a [Wulf et al., 197^]. These were still being activeiy developed, and
the steady influx of new hardware and software took a large toll (even larger than
anticipated) in system crashes and incompatibilities.

Even in the face of such risks, it was felt the problem had sufficient interest to be
worth pursuing, with an understanding that the final results would inevitably focus on a
small number of the total set of issues. The remainder of the introduction summarizes the
major components of this study. First comes a characterization of the speech
understanding task, followed by overviews of the two architectures: PS and HSII. The final
component includes the underlying C.mrrp hardware, operating system, and implementation

system used by HSP.

(2) For (his reason, it i« improper to identify HSP as • "PS for ipeech undentendini".

e

Chapter 1 Introduction Page 3

1.1 The Speech Understanding Task

The origin of much of the current activity in building speech-understanding systems
dates back to the spring of 1970, when a study group was set up by the Advance
Research Projects Agency of the Department of Defense. Its task was to consider the
feasibility of developing a system that would understand human speech in the context of
performing some task. The final report of that study group [Newell et al., 1973] concluded
that a five-year development program to produce a research prototype system would
have a reasonable chance of success, and a big payoff for the technical community at
large. The term "Speech Understanding System" (SUS) was coined to distinguish the goal
of understanding the intent of an utterance in the framework of some task from the
(harder) goal of "recognition" of the utterance as consisting of particular words, phonemes,
etc. The report laid down a set of specifications for thr system along 19 dimensions which
defined fairly precisely what the goals of the effort should be, and how success or failure
could be measured.

The results of the five-year program are now in. It was successful not only in
achieving the specific goals, but also in producing a large collection of scientific and
technical advances [Medress et al., 1977; CMU Speech Group, 1977; Walker, 1976; Woods
et al., 1976; Bernstein, 1976]. The system which succeeded (on 13 August 1976) is called
HARPY [Lowerre, 1976], and was developed at CMU as an alternative to HSII (the system
studied by this thesis). HARPY's performance was 917. sentence accuracy (957, semantic
accuracy) on a 1011-word vocabulary with 5 speakers. HSII came very close to the goals
with about 707. sentence accuracy (917. semantic accuracy) for a single speaker.

Several aspects of the speech understanding task make it stand out from many other
artificial intelligence tasks:

The rich structure of hierarchical information levels (phonetic, syllabic, lexical, etc.)
and knowledge sources. This I. ings to the fore the interesting problems of
knowledge interaction (conflict) and directionality control.

The high degree of formalization of each level, with lexicons of basic entities and
rules relating entities (both within and between levels). A consequence of this is
that much existing speech knowledge is conveniently representable as simple
tables (e.g., probability matrices and dictionaries) or networks (e.g., grammars and
state transition networks).

The large direct recognition component of speech understanding; i.e., little high-

■'.v^****'

Page 4 Introduction Chapter 1

level serial reasoning.

The ubiquity of error. Errors begin with the speech input itself; i.e., the variability
due to noise and speaker. Imperfect theory leads to additional errors being
introduced by inaccurate or incomplete knowledge-sources. As these errors
propagate through the various hierarchical levels, they are compounded. The
presence of error must be compensated by maintaining everywhere several
plausible alternatives, and this results in turn in a seriour. combinatorial Search

problenr

The Implementation Problems

The above aspects, and others shared with other artificial intelligence tasks, give rise
to characteristic implementation problems that must be attended to by builders of SUSs.
These are listed below in Figure l.l;4 additional qualification or listing of significant
subproblems is included where appropriate. Note th«1 problem 4 is more specific than the
others. It was included because of its particular importance for the C.mmp architecture

which underlies HSP.

13] This is indica<ed by (he f»e« «M human» undersUnd »peach in roal lim». Information proc««»inj model» of human
problem solving (Newell and Simon, 1972] indicate a baaic recognize-act cycle time of 20-100 milliseconds for
»ho human serial processor, or only about 10-50 cycle» per second. Thus, sue!) a processor could no»
understand speech unless a great deal of the task were accomplished by direct recognition. However, human»
may have some speeiel pipe-lining or other similar mechanism» to provide more effective parslleliem for »peech

underetanding.

[A] An important »ourc» for »he construction of Ihi» problem li»t wa» the paper by Moore end Newell [1974] on

the Merlin system, which contains a list of design features for the creation of an intelligent system.

V.

Chapter 1 Introduction Page 5

1. Adoquacy of representation
Not mere possibility, but some degree of facility

2. Space efficiency
Of both long-term and working memory

3. Time efficiency
Real-time input
Searching in combinatorial spaces
Exploiting parallelism

A. Limited Address Space
Large systems on small-address-space machines
Also Known as the Small Address Problem

5. Error
In input
In knowiedge-sources

6. Directionality
Integrating the activity of multiple idiosyncratic knowledge-sources

7. AuRmentation
Knowledge interaction problem

8. Testing

9. DebuRging •

10. Performance analysis

Figure 1.1 Characteristic implementation problems for Speech Understanding Systems

Page 6 Introduction Chapter 1

1.2 The Promise of Production Systems

A production system architecture (PSA), in the sense of this thesis, consists of a set of
rules, called productions, stored in a production memory (PM), and a working memory (WM)
which holds symbolic structures operated on by the productions. A production consists of
a condition part which tests the current state of WM, and an action part which specifies
additions/modifications/deletions to WM to take place in case the condition part is true.
The basic operating cycle of a PS is a "recognize-ad" cycle: i.e., recognize which
production conditions are true of the current WM, then execute the corresponding
production actions. Since each cycle makes some change to the WM state (which changes
the sot of productions that are true), iteration of the cycle produces (potentially, at least)
an interesting stream of behavior.

PSAs at large show a great deal of diversify. The strain to which HSP belongs has a
lineage beginning with studies of human problem solving [Newell and Simon, 1972] and a
PSA :alled PSG [Newell and McDermott, 1975], and extending to the more recent
architectures of PSNLST [Rychener, 1976] and OPS [Forgy and McDermott, 1977], A
variant strain with roots in performance-oriented, knowledge-based expert systems
(DENDRAL [Feigenbaum, Buchanan and Lederberg, 1971] and MYCIN [Shortliffe, 1974])
embodies a major architectural difference in the use of rules. These systems treat rules
as declarative knowledge structures to be interpreted by a simple, inflexible goal-directed

control mechanism;" i.e., the production rules are only a piece of the total system (though
the most important piece). On the other hand, PSG-like systems have no declarative long-
term knowledge; all knowledge is encoded as (procedural) productions, which combine
knowledge with how it is to be used (control information).7 The tradeoff between the two
views is essentially this: PSG-like systems have more flexibility in representing control
information (i.e., knowledge interactions), but at the cost of greater difficulties than MYCIN-
like systems in augmentation and permitting multiple use of knowledge.

How a PSA Faces the Implementation Problems

The substantial promise that PSAs show for large artificial intelligence systems
(specifically, speech understanding systems) can be made concrete by examining each of
the problems introduced above. Unfortunately, as we shall see below, a PSA does not
necessarily offer promise for all the problems; some may be exacerbated.

Adequacy o[representation — The simplicity of PSA data and control
representation is grounds for some doubt about adequacy. Medium-scale PS

[5] This is analogous to fho "f«Uh-ax»cuU" cycl« for tequanlial machines,

[6] Rpcont work by Davis [1976, Chapter 7) ha« shown how 1o incorporate mela-rule« into MYCIN for »trateji»!

of knowledge use. This solution is distinctly different from the single-level rules of PSG-like systems.

[7] Winograd's (1975) discussion of declarative vs. procedural representations is relevant here.

Chapter 1 Inlroduction Page 7

efforts [Rychener, 1976] have met with success, but we must wait for evidence
from large, complex systems; e.g., the Instructable Production System [Rychener
and Newell. 1978].

Space efficiency -- The space efficiency of PSs is not yet clear. Rychener [1975]
observed that his PSs seem to be less space efficient (a factor of three in one
case) than the equivalent versions in standard artificial inteliigencp languages. As
will be seen in Chapter 3, the large, simple knowledge tables of the speech task
cause space problems for HSP.

Time efficiency — The recognize-act cycle, with its inherently large ratio of
recognition to action, matches well with the large recognition component of the
speech task. However, the theoretically limitless recognition power of a PSA is
just a dream on current machine architectures. This includes parallel architectures,
since only tens of processors are typically available, while thousands may be
heeded.

Limited Address Space -- The decomposition of both long and short-term memory
into structurally independent units (productions and WM elements, respectively)
offers the possibility of overlaying these units in the address space. However,
current mechanisms for efficient condition evaluation require additional large data
structures which may be more difficult to overlay.

Error -- The recognition structure of PSs allows those errors which are detectable
by direct recognition of the WM state (hopefully the majority) to be continuously
checked, and (theoretically) at little cost to the main processing. The response to
an error stale could be the application of some specialized knowledge to correct
the error and thus effect automatic recovery. If the PSA is one in which new
information augments the WM rather than replacing information already there, this
provides a sort of automatic history mechanism. Such a mechanism could be useful
for reconstructing the reasons for an error.

Directionality — Since PSs operate on a basis of immediate action through
recognition, they will always attempt to apply every bit of knowledge which bears
(directly) on the current situation. Thus the main problem for directionality
becomes one of restricting potential behavior.8 An obvious way to resolve a
conflict among a set of productions is to make their conditions more discriminating
by adding condition elements. These elements either lest more detail of the
natural WM state or lest for special control signals in WM.

Augmentation — The simple model of augmentation by additive growth is perhaps
the most seductive feature of PSs, although a deceptive one. There remains the
problem (as yet poorly understood) of how to achieve coordinated action between
original and added productions.

18) AHhough in cases whsre the desirsd direction of behewiof it Known in edvence, »here is cerUinly no problem in

■imply programmint the PS to behave appropriately. ,

Page 8 Introduction Chapter 1

Testinp, -- There is a potential for rapid setup of test situations within a PS simply
because there is no long-term processing state contained anywhere except in the
WM. Thus many tests can be conducted by initializing WM to contain elements
which will induce the behavior to be tested, and then just starting the PS. This is
easy provided a modest number of elements suffices.

Debugging -- Monitors on the WM state can be written as normal productions and
intermixed freely with task productions. Secondly, since the basic operation of the
PS is interpretive, the control points already exist for adding facilities such as
tracing and breakpoint. Finally, productions can easily be disabled temporarily to
eliminate extraneous behavior when zeroing in on a problem.

Performance analysis — The uniform structure of small, relatively independent
productions, each with a definite function, seems to provide a fertile field for
performance analysis. Ablation studies (i.e., observing the effect of selective
removal of productions) should be possible in great variety because of the large
number of productions. It should also be possible to trace the contributions of
knowledge in great detail at the level of individual productions. Finally, an analysis
of variance study (with individual productions or groups thereof taken as the
factors in the analysis) might be useful in helping determine how productions
interact, in both useful and detrimental ways.

i
Thc uverall picture painted above is a rosy one indeed. A note of realism is in order: it

is unlikely that all, or even most, of the positive promises will come to fruition. Some of
them are highly speculative. As each aspect is better understood, there will be additional
qualifications. And, as always in complex systems, problems which we think have been
solved have often only moved to a different place. Thus, the above list must be
considered a provisional one, serving only to guide the next wave of research.

1.3 Overview of the HSII Architecture

Hearsay-II (HSII) is a system organization for the speech understanding task designed
to coordinate the contributions of diverse, essentially independent sources of knowledge
which operate at the different hierarchical levels of speech knowledge.

The essential device for communication among knowledge sources (KSs) is a large
shared Working memory called the Blackboard (BB), which ail KSs inspect and modify. The
BQ is a medium for growing linked networks of hypotheses (hyps) about what elements
exist at the various levels and for various time intervals of the utterance (e.g., words,
syllables, etc.). The BB levels form a hierarchy based on the lime grain of the
hypothesized elements at each level. Elements at the top level span the entire utterance,
while the bottommost level contains elements corresponding to small segments of the
utterance. A crucial feature of the BB is its capacity for representing and interrelating
alternative hypotheses at all levels and time regions.

Chapter 1 Introduction Page 9

A uniform hyp structure is used at all levels of the BB, except for the fact that a
different lexicon of elements exists at each level. A hyp is an attribute-value structure
(the attributes are called fields) with entries for: the lexicon of the element, the element's
identity, the element begin and end time within the utterance, links from supporting hyps
at the next lower level, links to supported hyps at the next higher level, a current
estimate of validity, and several other items. It is possible to particularize the hyp
structure at any level by dynamically adding new fields and associated values which are
relevant to KSs operating at that level; and this is an important feature that gets much
usage. In addition to hyps, the BB contains links which consist of: a reference to the
lower (supporting) hyp, a reference to the upper (supported) hyp, and an implication value

indicating the strength of the support.

Upward growth in the BB normally consists of linking a hyp or a time-adjacent
sequence of hyps at some level to a new hyp at the next higher level; this is essentially a
recognition process, and the lower hyps are said to be supporting the upper one.
Downward growth in the BB normally consists of hypothesizing and linking to a hyp or
sequence of hyps at the next lower level; this is essentially a prediction process. Also,
sideways growth may occur in the form of predictions of hyps in the context (right or left

in utterance-time) of already existing hyps.

All the static speech knowledge in the system is encoded as procedural units (the KSs)
written in SAIL, a compiler based, higher-level algebraic language [Reiser, 1976]. The KSs
are structured to contribute their knowledge by creating and modilying BB hyps and links
in response to relevant changes by other KSs (i.e., in a data-directed fashion). KSs are
typically experts about the relationship between units at two adjacent levels in the BB,

and work only locally in that area.9 Every KS can be completely independent of all others
except those that deal with the same BB levels it does, and even then communication is

1 fi
restricted to occur only through the structures in the BB.

An initial portion of the condition for KS action is encoded in a separate procedural
unit called a Precondition (PRE). Every KS has a corresponding PRE, although a single PRE
commonly acts for more than one KS. A PRE is executed (to evaluate its condition)
whenever a BB change occurs which belongs to a class which the PRE is interested in. If
the PRE finds what it is iooking for in the B3 (evaluates to True), it instantiates the
appropriate KSs to act on that local area of the BB. The main reason for having PREs
separate from the KSs is to obtain enough preliminary context information about KS
instantiations to allow their desirability to be estimated and used by the scheduler.
Another reason for having PREs is that KS instantiation overhead is avoided when the PRE
evaluates to False. (PREs remain in existence throughout an entire run, and thus there is

little overhead in invoking one.)

The global behavior of the HSII system can be viewed as a heuristic search through

[9] How»v«r «om» KS» ini»y d»»l with non-»d)»c»nl Itv.lt, and Ihit fr»«doin if • criticil »»p^c» of «h« »rehiUetur».

[10] Thti is lh» philosophy. Th« r**l iy»l»m violatai Ihn in a nombar of placai, uaually for »fficwncy raaaons.

Page 10 Introduction Chapter 1

the space of partial recognition networks being built up in the BB; these structures are in
the form of hyps with validities, and validity-propagating links between them. The overall
goal is to find a sufficiently valid network which spans all levols of the BB and the entire
utterance time. The KSs expand the networks both bottom-up and top-down until they
can be joined. Validities are periodically updated for the growing partial networks, and
the validities also provide heuristics for the network-growing activity by indicating how
and where the growing should proceed.

How HSII Faces the Implementation Problems

The HSII architecture was of course designed with the system problems of Figure 1.1
in mind, and hence has many characteristics intended to deal with the problems. The
following list describes the most important of these characteristics:

Adi iiiacy of representation -- HSII plays it safe on adequacy for long-term
knowledge by using SAIL, a general higher-level language, so that there is very
little constraint on how knowledge is encoded in the KSs. As for working memory,
SAIL data structures are adequate for KS-local use, and for global use the hyps
and links of the BB can have arbitrary attribute-value structures appended.

Time/space efficiency ~ HSII KSs are individually "tailored" for efficiency, with
specialized local data structures which save space and access time compared to
their global (SB) equivalents. These local structures also avoid the substantial
overheads of data-directed invocation which go with global BB use. Furthermore,
the HSII architecture allows parallel execution of KS instantiations along three
dimensions: different KSs, different utterance-time intervals, and alternative
hypotheses. A parallel machine simulation study made within HSII [Fennell, 1975;
Fennell and Lesser, 1977]) yielded an effective parallelism measure between 4 and
6, based on an earlier version of HSII which had a limited set of KSs. With a richer
set of KSs and/or a reduction (or elimination) of synchronization overheads, the
effective parallelism could be expected to increase dramatically.

Limited address space -- The independence of KS modules permits them to be
overlayed in address space (in this case swapped in from secondary memory).

Error -- The main way in which HSII handles error is by tolerating it — by making
the knowledge ignore minor mismatches and inconsistencies (as for time adjacency
tests), and by having alternative sourrps of knowledge. A crucial part of this is
the representation in the BB of Mve (conflicting) hypotheses and their
interrelationships.

Directionality — A mechanism with iSII kernel schedules potential PRE and
KS instantiations according to their "desirability", which is a function of the set of
BB elements the KS or PRE is likely to manipulate, and of the current global state
of the BB. In addition, individual KSs commonly use rating thresholds to limit their
activity.

AuRmentation — Normal program modif cation to the SAIL module for a KS is the

Chapter 1 Introduction Page 11

(
standard means of knowledge augmentation. However, most KSs are table or rule-
driven and thus can be augmented in certain ways by simply adding table entries
or rules. If is possible (and easy) to augment by integrating a new KS into the
system (though implementing the KS itself may be hard). This is not often done,
but has been instrumental in several major iterations of the system.

Testing -- Testing can be done reasonably effectively by operating with a minimal
system configuration (i.e., the KS to be tested in a minimal environment), and by
including in the KS code some special facilities for controlling test runs.

Debugfiing — HSII has its own interactive command language and debugging tools,
taking up a third of the system (exclusive of KSs), and representing a significant
development effort in the early years of the project. These tools span all levels of
system siructure, from inner details to global interactions of KSs.

Performance analysis -- Much analysis is done on individual KSs running in minimal
configurations. (The independence of KSs is what allows these configurations to
work.) Causality analysis [Newell, 1975] (i.e., looking at which KSs make which
changes, and why) carries most of the burden of performance analysis; the display
facilities to support this require 117. of the system size. Ablation studies [Newell,
1975] are almost impossible in practice at the level of whole KSs due to excessive
leanness of knowledge in the system (i.e., the existing KSs barely span all levels of
the BB). However, individual KSs were coded to allow certain subparts to be
switched on and off for evaluation purposes.

To summarize, HSII has devised means of dealing with these problems — its success
provides an independent demonstration of that. But the problems have not been
completely solved, and many of them are limiting factors in attempts to improve

performance.

1.4 The Systems Underlying HSP

All three components of the underlying system used to implement HSP (the C.mmp
hardware, the Hydra operating system, and the L* implementation system) are unusual.
Though they did have a strong impact on the HSP implementation effort itself, their effect
for the most part did not carry through to the HSP architecture. If fact, HSP purposely
avoids using operating system facilities wherever possible so that their effect need not be
factored out of the data. Thus, no description of Hydra is necessary here. Interested
readers may consult [Wulf et al., 1974].

The C.mmp hardware [Wulf and Bell, 1972] consists of 16 slightly modified PDP11
processors (currently 11 PDPll/^Os and 5 PDPll/20s) connected to 16 primary memory
modules via a 16 x 16 crosspoint switch, which allows each processor to access all the
memory with only minor switch delay. Each processor has a set of /elocalion registers

'■.r*tfm

Page 12 Introduction Chapter 1

which map addresses at the processor to physical memory addresses. This hardware
architecture does have a significant effect on HSP in at least two ways. First, and most
obvious, is the potential for up to 16-way parallelism in program execution. HSP was
designed with this potential fully in mind, ?nd Chapter 5 reports the results on HSP's use
of parallelism. A second effect is the uncomfortably small 16-bll address space of the
processors, which provides a movable window on the large primary memory (about a
million words). HSP incurred very large development costs, and somewhat smaller runtime
costs, in dealing with liiis so-called Small Address Problem. Chapter 6 presents the details

of this.

The principal impact of L* [Newell, McCracken and Robertson, 1977] on HSP is in
efficiency, both of time and space. The central programming language of L* is interpretive,
and although translation to machine code is possible, HSP was left entirely interpretive.
Inefficiency of space comes from the encoding of data structures as L* list structures.
These effects must be factored out when time and space comparisons are made with HSII.
The substantial benefits of L* came during HSP development: flexibility to allow rapid
iteration and experimentation, plus an overlay facility to help with the small address
problem.

1.5 Organization of the Thesis

The body of the thesis has the following organization: Chapter 2 introduces the HSP
architecture and contrasts it with several related PSAs developed at CMU. The
intermediate chapters (3 through 6) deal with the rain results of the thesis, covering
representation (Chapter 3), time efficiency (Chapter M), parallelism (Chapter 5), and the
small address problem (Chapter 6). The conclusion (Chapter 7) presents a complete
recapitulation of the results, structured as a list of assertions followed by a list of
important unanswered questions. The intermediate chapters contain no significant
conclusions that are not reflected in Chapter 7. They do contain background and details of
how the evidence was developed. No separate summaries are included in intermediate
chapters; the conclusion chapter serves that purpose since its organization closely follows
the division of the intermediate chapters.

Chapters 1 and 7 form a nearly self-contained unit, so that a useful strategy for
reading the thesis is to concentrate on those two, and merely skim the others for
background and a flavor of the details.

For tlie sake of completeness, detailed specifications of the HSP architecture appear in
Appendix A. This will not be relevant to the general reader. Potentially more valuable is
Appendix B, which contains annotated sample HSP productions. These can be referred to
for a quick overall impression of HSP.

Chapter 2 The HSP Architecfure Page 13

Chapter 2

The HSP Architecture

There were two major driving forces behind the design of the architecture for the HSP
system. The first was the nature of the speech !ask itself and the model provided by the
HSII architecturGv which is similar in many ways to a PSA [Fennel!, 1975]. The second was
a general PSA design philosophy, manifested in systems developed at CMU such as PSG
[Newell. 1972; Newell and McDermott, 1975], PSNLST [Rychener, 1976] and OPS [Forgy
and McDermott, 1977].1 These three architectures represent a historical progression in
PSA development at CMU (PSG: 1971, PSNLST: 1974, OPS: 1976); HSP is a contemporary of
OPS. Comparisons between HSP and other PSAs will be restricted for the most part to
just those three systems; the close kinship of the systems makes the comparisons sharper,
and will not take us too far afield.

There is one other related PSA which should be mentioned: the one used for the SASS
module in HSII [Mosfow and Hayes-Roth, 1978]. Its productions use condition and action
primitives specialized to its task of syntactic and semantic recognition (e.g., predicates
such as ADJACENT, and actions such as CONCATENATE). They are at a grosser level of
representation than HSP and its three kindred PSAs; typical actions involve SAIL
procedures oh the order of a hundred statements, rather than primitive modifications to a
working memory. Also, the productions do not encode high-level control knowledge, that
being the domain of the HSII focussing mechanism. Efficient evaluation of the productior.s
is obtained with an Automatically Compilable Recognition Network (ACORN) [Hayes-Roth
and Mostow, 19"5]. The ACORN reduces redundancy of condition evaluation in much the
same way as the mechanisms in OPS [Forgy, 1977].

"''his chapter has a double purpose: to briefly introduce the HSP architecture, and to
compare it with PSG,3 PSNLST and OPS. The features for comparison were chosen
because of their importance in the overall shaping of HSP, or because they strongly
dislinguish HSP from the comparison systems. Figure 2.1 summarizes the comparisons.
The remainder of this chapter elaborates on these, and in so doing also introduces the
most important features of the HSP architecture. For more details on the architecture,
consult the detailed HSP specifications in Appendix A, or the annotated productions in
Appendix B.

[1] PSG was developed by Newell principally for building »nd (esling model« of human cojnifion; PSNLST was

developed by Rychener for a study of lh» use of a PSA for a set of classic arfifieial inUlligenca Usks; OPS

was developed for »he Inslruefable PS project (Rychener and Newell, 1978] by Forgy, McOermoH, Newell and

Rychener.

[2] Wider-ranging PS comparisons can be found in (Davis and King, 1975].

(3] PSG eclually represents a large family of of PSAs sines many key features are parameterired We assume here

the default ssttinfs.

HPi

Page 14 The HSP Architecture Chapter 2

Production Memory
Add productions dynamically

WorkinR Memory
Simple list structure for elements
Arbitrary nesting
Explicit WM element references

Conditions
Explicit condition on change
Arbitrary predicates
Match arbitrary WM element subpart
Disjunctions
Negated conjunctions
Bind variable to whole WM element

PSG PSNLST OPS HSP

Yes Yes Yes No

Yes Yes Yes No
Yes No Yes No
No No No Yes

No No No Yes
No Yes Yes No
No No No Yes
Yes Yes Yes No
No Yes Yes No
No No Yes Yes

Actions
Modify WM element subfields

Control
Conflict resolution
Fire multiple productions per cycle
Fire multiple instantiations
Exploit parallelism
Special case inhibition

Yes No No Yes

Yes Yes Yes . No
No No No Yes
No Yes Yes Yes
No No Yes Yes
Yes No Yes No

Figure 2.1 Comparison of HSP with related PSAs

Production Memory

The three comparison PSAs all have a special action which in some way adds a new
production to PM, maKh.g PM dynamic. HSP does not, for several reasons. The complexity
of the implementation would be substantially increased, and the gap between HSP and HSII
would be widened, making comparisons less meaningful.

[4] The decision not fo add productions dynamically is consistent with what is known about human information

processing Several seconds (the length of a speech utterance) is simply not long enough for appreciabla

storage into long-term memory [Newell and Simon, 1972).

»tfj

Chapter 2 The HSP Architecture Page 15

Working Memory

In contrast to simple symbolic list structures (e.g., (a b c) or (a (b (c)) (d)))
used by the other PSAs, HSP uses an attribute-value structure.5 The format for a WM
element field is \ dent i f I er/va 1 ue, with fields being positionally defined if I dent i f I er/
is omitted. Arbitrary fields (or subsets of fields) of a WM element can be easily
referenced in a condition element or action element, and new fields can be created
dynamically. This added flexibility allows efficient grouping of context into fewer WM
elements than would otherwise be possible. For example, this means less searching is
nececsary during condition evaluation.

The following h an example of an HSP WM element to represent the hypothesis that
the word "BOOK" was spoKen, beginning at .17 to .23 seconds into the utterance and
ending at .58 to .62 seconds, with the validity of the hypothesis believed to be 607..

< HYP WRD "BOOK" BTIME/(20 3) ETIHE/(60 2) VLD/60 >

This example illustrates most of the field value types: HYP and WRD are symbolic field
values; "BOOK" translates internally into an integer (the index of BOOK in the word
lexicon), and the VLD (validity) is an integer; the begin and end time field values are lists
of two integers (time and range).

The last value type, not shown in the above example, is an explicit reference to
another WM element. Inter-element references need to be represented somehow, and
doing so explicitly is more satisfactory than implicitly (e.g., by having the two elements
share a unique subfield, or by having a special third element to represent the linkage).
Also, as discussed in Chapter 4, these explicit references have a strong positive effect on
time efficiency.

The attribute-value and explicit reference features were borrowed almost
unconsciously from HSII where information in the Blackboard is structured as hyps and
links (the analog of HSP WM elements), with some fields being pointers to other related
hyps or links.

Conditions

All conditions In HSP begin with an element which directly tests the nature of a change
to WM (i.e., which type of change, and the identifier of the changed field). Changes to WM
are themselves explicitly symbolized in the same form as WM elements, although they are

(5] How«v«f, becausB of ftaxibiMy in m«lchin|, PSG it »bl« Jo f«(moi» of «h» iff»«» of »n •HribuU-vtIu«

■ truclur« with: ((tl vl) (a2 v2) ..).
I

[6] This WM el«msn< a<ruc»ur» is vsry similsr to th» Psrsmslsrizsd Structural Raprt lantation» of Hayas-Roth

[1973).

Page 16 The HSP Architecture Chapter 2

not Gtored in WM.' This condition on a change follows naturally from the HSU architecture
in which Kf^ are required to declare (for purposes of efficient monitoring) which sorts of
changes they wish to reBct to. In HSP, this initial condition helps efficiency in two ways: it
allowi- production evaluation filters to be built (i.e., associations from characteristics of a
change to relevant productions, analogous to the HSU change-monitoring mechanisms), and
it eliminates some WM searching during production evaluation by pre-binding a variable to
the changed WM element (which is presumahly being matched by the production if it first

matched the change itself).8 But it is more than just an efficiency mechanism; it actually
encodes some additional knowledge. In effect, if says "this is the only relevant change for
this condition". This saves the inefficiencies of monitoring for and responding to irrelevant
changes. But sometimes, when more than one sort of change is relevant, it forces wasteful
duplication of the production. For example, a sequence recognition rule requir ,s a separate
production for each constituent, representing !he case of that constituent being the last to
appear. This duplication is significant but bearable in the KSs translated for HSP, but it is
expected nevertheless to be a serious problem in a more complex system.

This feature of including a condition element on a change provides another quite,
important function; namely, it solves the excitatory instability problem. A production will
fire only when some change has just occurred to WM which makes the production
condition true. In successive cycles the production will not continue to fire even though
the same WM state remains true, becafse the relevant change has not just occurred.
PSiNLST and OPS eliminate excitatory instability by not retiring the same instantiation of a
production. PSG provides no solution, leaving it to the user to explicitly mark WM
elements in every action to keep the production from retiring on the next cycle.

The HSP architecture permits special predicates to apply to integer-valued WM

element fields. These are expressions surrounded by [] and buiit from the arithmetic

relations > and < and operations +, -, *, /, MAX, HIN and ABS. Further, such predicates

can be composed to form compound predicates with AND, OR and NOT. (This NOT is
different from the one for negation of an entire condition element). For example, the
predicate [NOT > 8BT+t5] tests a WM element integer field to see if its value is not

greater than the value of variable SOT plus 15.

PSNLST and OPS go even further than HSP by allowing an arbitrary LISP function as a
predicate. This may be inappropriate because if gives too much power to the condition
evaluation, and if exploited to its fullest could subvert the basic PSA philosophy.

The attribute-value structure in HSP allows a condition to be specified on an arbitrary

«

[7] An early version of HSP did ilore change element« in WM, opening up »ome inleresfing possibilifiee for the PS

moniforinj ifs own behavior, However, the feature had lo be abandoned for implemenfalion reasons.

[8] PSNLST uses <ho same sort of association from change« lo relevant prodjefions and also does some pre-
binding to variables in a p>oduelion condition based on the change, but the change i« not explicitly matched in

the production condition.

Chapter 2 The HSP Architecture Page 17

suhr.et Of the fields of some WM element. For examp'e, the condition element < HYP WRD

VLD/[> 80] > matches all word hyps whose validity is greaier than 80, regardless of
what other fields they may have. This is essential, given that information tends to get
added as extra fields of existing WM elements rather than as separate WM elements. PSG
and OP? have a partial capability for matching subp?rts Of WM elements, in that a
condition can apply to an initial subsequence of subelements (i.e., the tail of an element
can be ignored).

Although early versions of HSP followed the lead of the other PSAs in providing
disjunctions within conditions, disjunctions were eliminated in an intermediate design
iteration. This simplified the interpreter and increased parallelism (but at the cost of some
increased redundancy, both in space and time). It elimina'ed the (minor) confusion cf a
second source of multiple firings of a single production (the first being multiple matching
WM elements for some condition element). Finally, it made production counts as a measure
of knowledge content more meaningful since it prevents two productions with substantially
different conditions from masquerading as one just because their actions are the same.

Negated conjunctions were ruled out to simplify implementation, but also out of a

vague feeling that they give more power to a single production than is appropriate.
Besides, a negated conjunction such as NOT (A B C) can be split ir separate

productions with the following conjunctions: NOT A , A NOT B and A B NOT L. ith the
conjunctions written in this way the three productions are mutually exclusive, avoiding
multiple firing problems. Rychener [1976] cites negated conjunctions as an essential
feature of PSNLST, beinp, used .4 times per production on the average. Some of these

uses can be expressed in HSP as a single negated condit.on element. Yet there are other
important uses of negated conjunctions in PSNLST that are not conveniently representable
in HSP, requiring instead several coordinated productions acting over several PS cycles.

In HSP, if a condition element is proceeded by 8V=, then one of two things may

happen. If the variable 8V is unbound in any previous (to the left) condition element, then
a successful match of the current condition element will bind the matched WM element to

$V. If on the other hand the variable is already bound, the condition element is applied

exclusively to the WM element reference bound to SV (i.e., no WM searching occurs). Most
often this case results from the variable having been bound to an explicit WM elemeni
reference contained in an earlier-matched WM element.

[9] Behind Ihii in ■ concern thai loo powerful « condition len(u>t* wi" defeat the besic PSA property of

"immediale" recognition.

(10J For example, the HSP condition: <a 3> NOT <i (>3] > it true if the elemeni <• 3> ii in WM, but no »imilar
element with a number greater than 3 ii also In PSNLST a negated conjunction it required to represent this

since the *>* predicate ie not built into the architecliv*.

PagelS The HSP Architecture Chapter 2

Actions

There are teven action primitives in HSP:

NEW creates a new element for WM

DEL deletes an element from WM

HOD replaces 'n a WM element the value of !he f;eld with a given identifier

HOD. ADD adds to a specified list field of a WM element

HOD.ADDE adds to the end of a specified list field

HOD,REP makes a replacement within a specified list field

HOD,DEL deletes from a specified list field

PSNLST and OPS have only a create and delete for whole WM elements. This is of
course adequate, since any small change can be made by deleting the old element and
creating a new one which is a copy of the old except for the change. But the large size of
most elements in HSP makes this undesirable, both for efficiency reasons and because
copying of an element is not possible when only a few subfields have been matched (as is

often the case).

It should come as no surprise that the set of HSP action primitives closely mimics the

set of Blackboard modification routines in HSII. Note that a HOD, HOD, ADD or H0D,ADDE
operation on a non-existing field will create the field; i.e., this is how dynamic creation of
new fields is effected.

Control

A feature of HSP that distinguishes it strongly from l^i others is the absence of any
conflict resolution process. All productions which evaluate to True in a given cycle, no
matter how many, are allowed to execute. The motivation for this design choice comes
largely from the example of HSII; the existence of multiple, independent sources of
knowledge (productions in HSP) makes multiple production firings a natural choice.

Another reason for doing without conflict resolution is a desire to minimize the
knowledge built into the PS interpreter and simply let the production conditions take care
of themselves. The OPS designers disagree with the desirability of this. McDermotl and
Eorgy [1978] express a concern that extending production conditions to resolve their own
conflicts will severely restrict the system's ability to learn. Thus they opt for a thorough,
carefully designed conflict resolution mechanism [Forgy and McDermott, 1977]. Learning in
HSP is a moot point; but by analogy, absence of conflict resolution may wall have a serious
negative impact on the problem of augmentation.

The absence of a conflict resolution mechanism does cause problems for HSP. But they
seem to be surmountable, often requiring a few extra coordinated productions operating

[11] AMhough ■ very large number might cause tome concern because of • loss of control over directionality. I.e.,

(he ayslem'a ability to rapidly shift its focus of attention would be hampered.

i—i

f

Glister 2 The HSP Architecture Page 19

over several PS cycles. These extra productions usually make use of an explicit delay of
some small number of PS cycles. This n-cycle delay is implemented with a chain of
productions that simply mark time, waiting until some related activity is known to be
finished.

HSP is alone in allowing multiple productions to fire in a single cycle. The other three
architectures use their conflict resolution to select a unique production to fire, resorting to
arbitrary choice when necessary. Although multiple productions may fire in a single cycle,
there is still a global synchronization at the end of every cycle. All productions must have
been evaluated before any action may be executed. (During evaluation, actions are
"interpreted" to obtain symbolizations of the changes indicated in the actions, then when
all evaluation is completed the changes are actually made). This has direct implications for
parallelism and synchronization of parallel activity, as will be seen in Chapter 5.

Firing multiple instantiations of the same production means that the action of a single
production may be executed multiple times — once for each possible set of bindings to
variables in the condition that make it True. HSII KSs exhibit an exact analog of this
property, in fact, its use seems almost mandatory for the case of speech knowledge
operating at Tnulfiple locations in the utterance-time dimension. For example, a production
which responds to a new word "BOOK" should fire twice if two "BOOK^ appear at different
utterance times.12 Of the comparison PSAs, PSG is the only one which doesn't have this
property ofjterating through all instantiations of a production; current philosophy seems
to regard it as an essential convenience.

M feature which separates HSP from the others is the use of parallelism in the
underlying system to speed up evaluation.13 No more will be said here about parallelism
since Chapter 5 is devoted to it.

HSP has no mechanism for special case inhibition; i.e., a mechanism that prevents a
production from firing even though true when a more special (however that is defined)
production is also true. (The other PSAs obtain special case inhibition through their
conflict resolution). Doing without special case inhibition eliminates some mechanism from
the PS interpreter, but this is a relatively minor advantage; the main reason for the
decision was to obtain as high a degree of parallelism in the evaluation as possible. Any

[12J Th« need to foeut »clivi»y of lh» system providtt • b»«ii for favorinj eorUin tim» rofion«, but foeussint in
HSP should b« conlroliod by ■U|m«Mm» production condition! to bo tontitiwo to tho tim» rofion, not by howinf

a separat» machiniim.

[13] The original varaion of OPS wa« daaijnad to auplol» parallalism, althoujh it« implamanfation w»a not on •

parallel machine The most recent OPS version haa |iven up it« inclination toward parallaliam in order to be more

efficient on a uniprocaaaor

e

[14] Ef' P* >« • special caae of Pb if it ha« all the condition elamanla of Pb plu« «ome extr« one«.

Page 20 The HSP Archited ye Chapter 2

scheme for doing the general-special case checking would probably result in a significant
reduction in parallelism.

Giving up special case inhibition has rome serious consequences, both for programming
convenience and tor the learning of new productions without modification of existing
productions (though this is a moot issue for HSP with its static PM). However, there are
ways for HSP to get around the programming inconvenience: general case productions can
be augmented to make them special, i.e. to make them fire only when no special case
production is true; or both general and special productions can be allowed to fire, if there
are other productions which can detect this and favor the special case result.

^.i^«--1 "»

Chapters A Comparison of Representation in HSII and HSP Page 21

Chapter 3

A Comparison of Representation in HSII and HSP

This chapter compares#several aspects of representation of knowledge in HSII and
HSP. it is based on 12 KSs which were translated from their HSII form to HSP productions,
with varying degrees of completeness. Figure 3.1 shows these KSs, all of which listed
in the January 1976 version of HSII.1 The following four KSs, also part of that HSII
version, were not translated to HSP: PSYN and CSEG for mapping segments into phones^2

FOCUS for directionality control; and the postdiction KS of the SASS module.

SASS module (Syntax and Semantics)
RECOG Recognition of phrases from words and subphrases
RESPELL Spelling of phrases into words and subphrases
PREDICT Prediction of adjacent words and phrases

SASS module (newer version)
RECOG Recognition of phrases from words and subphrases

POMOW module
MOW Recognition of words from syllables
POM Recognition of syllables from segments

WOMOS module
WOM Spelling of words into syllables
MOS Spelling of syllables into phonemes

POSSE module Phone - surface-phoneme synchronization
TIME
SEARCH

SEG For inputting segments into Blackboard
RPOL Rating propagation policy

Figi. i 3.1 The HSII KSs thai were translated to HSP

The POM KS was translated with particular attention to completeness, and thus
provides a focal point for most of the detailed comparisons that follow. ROM's function is
to recognize likely syllables from the speech segments at the next lower level of the
Blackboard. It is a complex, multi-phase process, using three intermediate levels of

[I] Thi» is configuraJion Cl in [Lasser »no Erman, 1977]. For mor» informalion aboul »h-*« KSi consul» ih»
following: SASS [Mos»ow and H»y«»-Ro»h, 1978; Hay»s-Ro«ht MosJow and Fox, 1977]; Mc tid POM [Smith,

J976]i WOM, MOS and POSSE (Cronk and Erman, 1976Ji RPOL [Hayss-Roth, Erman and Lasssr, 1976],

[2] These «wo were eliminated from HSII soon after January 1976 by chan|in| POM »o work direelly from

segments rather than phones.

Page 22 • A Comparicon of Representation in HSU and HSP Chapter 3

representation between the segments and syllables. It contains a wide variety of
knowledge, possibly more so than any other KS, and thus exercises a good deal of the HSP

architecture. , ,

In spile of the attempt to translate POM with absolute fidelity, some deviations were
unavoidable. Most of them can be justified by the architectural differences of HSU and
HSP; the remaining few are unimportant. What is needed is some assurance that no
significant differences do exist; i.e., that the translation to HSP was adequate. The first
evidence for this lies in the nature of the translation process itself. During translation the
HSII KS code was studied statement by statement, and thus it is unlikely that any major
omissions or mistranslations occurred. The second bit of evidence is more direct: in the

single test run3 the HSII and HSP systems produced the same five alternative syllable

hypotheses as output.^ The syllable ratings do not match exactly since different methods
arc used for calculating the final rating. (This is one of the aforementioned unimportant
differences). However, the rank orderings are reasonably consistent.

This chapter proceeds now to comparisons of several representational aspects that
distinguish HSII and HSP. These aspects were chosen because they relate (directly or
indirectly) to one of the implementation problems introduced in Chapter 1, or perhaps
because they present a particularly striking difference between HSII and HSP. To aid in
coherence, these comparisons are divided into three categories: long-term memory
(containing the bulk of the material), working memory, and control.

3.1 Long-Term Memory

By long-term we mean having a scope spanning more than the understanding of a
single utterance. In the case of a speech understanding system remembering (he context
of an entire discourse, there might be an issue about whether to call this long-term or
short-term knowledge. However, HSII and HSP deal only with isolated utterances. Thus the
long-term knowledge is the static, general speech knowledge. The short-term memory is
empty to begin an utterance, and is dynamically built up during the processing of the
utterance.

There are quite a number of comparative points to be made about long-term
knowledge representation, and each will now be considered in turn.

[3] The nature of ih» (ai (run it »xplained in the following chapter.

[4] Actually, POM outpuli lyllablt daises, called nvHypee. but Ihii it not important in this context.

Chapter 3 A Comparison of Representation in HSU and HSP Page 23

3.1.1 Adoquacy

The basic evidence for adequacy is that a large number (12) of HSII KSs were
tr^nslated to HSP productions. However, there are nearly 20 other KSs'that have been
used at one time or another in HSII [Lesser and Erman, 1977]. Most of these were simply
not yet in existence at the time the HSP translations were done. Based on a moderate
understanding of how these other KSs work, there is no reason to believe they would be
more difficult'to represent in HSP than the 12 that were translated.5 Efficiency s another
matter, as discussed in Chapters 3 and 4.

This is not to say there were no difficulties in the translation, or that the resulting
broductions do not have some awkward aspects. For example:

An HSP production cannot iterate over WM element list fields of arbitrary length. A
separate production is required for each possible list length, while in HSII a single
iteration statement suffices. This apparent failure of the PSA is an artifact of the
mimicking in HSP of HSII's explicit references between hyps. If references in HSP
were individually represented as WM elements, iteration would be handled
naturally by the multiple firing of a single production.

Controlling duplicate actions is an occasional difficulty. When the changes in
question are simple modifications (i.e., the MOD action primitive), the system
automatically weeds out the duplicates so that multiple production firings do not
occur on the following cycle. When the changes are NEW, DEL, MOD, ADD, etc., the
system provides no help. The real problem with NEW elements is not detecting a
duplicate, but the lack of any basis for favoring one of the duplicates (while the
others are deleted). It might be feasible to automatically checl« for duplicates even
in this case, but it would be expensive. For example, every NEW WM element would
trigger a rmfch against all of WM. An alternative solution is used by the HSP POM
KS to eliminate duplicate syllable recognition. An extra cycle is taken which
effectively represents in WM the fact that a new syllable is to be created, but
distinguishes the two possible sources. Then the following cycle is able to detect
duplication, ani simply always favors one source over the other

There is currently no way in HSP to keep a tally (in WM) of some event being
monitored. For example, a production counting new word hyps would add one to a
count in WM every time a new word appeared. But if several appeared on the
same cycle, the coui.t would still be only increased by one (although redundantly).
This tallying capability is representative of a class of operations which are crucial

[b] Thnr» is »om» diroc« posUiv« evidenc« for on« of th« tnoro iuspec« uMranslaUd KS«, nam«ly th« word verifwr
which uses Ihs WIZARD proendurs [McKeown, 1977] HSP POM eonlsins production« for searching a syllabi«

siale fransilion nelwork which is ««»«nlially lha sama a« «ha word n««work« usad by WIZARD. Th» POM
producfions would not carry over exactly because Ih« WIZARD network« have longer path« with less

favorable combinatorics But the POM production« do ahow bsaic adequacy for WIZARD.

Page 24 A Comparison of Representation in HSI1 and HSP Chapter 3

for implementing directionality in HSP (see Section 3.3.2). Perhaps the right
answer is the simple expedient of adding an "increment" change primitive.

Arithmetic expressions in HSP often exhibit substantial redundancy within a single
production. Some means of saving results of common subexpressions (e.g., by
assignment to a local variable) would be helpful.

Taken together, these difficulties, and the few others not described here, are not
serious enough to refute the claim of adequacy, though they do take their toll in other
problem areas such as efficiency. Furthermore, there seems to be a good possibility that
iteration on the design of the HSP architecture could remove most of these difficulties
without deviating from basic PSA philosophy.

3.1.2 Simplicity of the Language

While there are conventions for HSU KSs, including the provision in the HSII kernel of
many primitives for accessing the Blackboard, KSs tend to use most of the expressive
power that SAIL provides: character-string manipulation, sets, lists, associative structures
and conditional assembly. The language provided by HSP for writing productions is a good
deal simpler than SAIL. Figure 3.2 shows a comparison of four aspects of the language
environment for KSs: the number of primitives (operators, pre-defined functions,
constants), the number of data types, the size of the runtime support, and the size of the
"compiler" for the language.

HSII HSP HSII/HSP

Primitives 310 53 6

underlying system
kernel

130
180

Data types 10 5 2

Runtime support (Kbits)
underlying system
kernel

2212
457

1755

494
203
291

4
2
6

Compiler (Kbits) 3100 264 15

figure 3.2 Comparison of KS languages in HSII and HSP

For HSII the primitive count is split into basic SAIL plus interface to the HSII kernel; no
such split makes sense for HSP since productions as a rule do not contain any basic L*
code. The SAIL primitive counts do not include I/O formatting or conditional compilation

Chapter 3 A Comparison of Representation in HSU and HSP Page 25

functions, nor any primitives that a KS would not reasonably be expected to use. The
runtime support for HSP includes the production interpreter (40 Kbits); SAIL has no such
interpreter. As a result its compiler's task is more difficult than HSP's. HSII runtime
support excludes 817 Kbits for debugging facilities in the kernel. The HSP "runtime
support" and "compiler" in HSP are just pieces of a single integrated system built up from
a basic L* system of 203 Kbits, but the size of each above excludes storage of external
names (141 Kbits) and utilities for editing, debugging, etc. (49 Kbits).

In summary, the HSP production language can be said to be roughly 5 times simpler
than HSU's KS language, with the exact factor depending on how it is measured. This
simplicity is a positive feature in so tar as it helps with problems such as debugging and
augmentation. Yet is raises some concerns about adequacy, and even stronger ones about
efficiency.

3.1.3 Declarative Knowledge and Multiple Use

The distinction between declarative and procedural encodings of knowledge has been
the basis for a long-st?nding dispute in the f'sid of artificial intelligence. Winograd [1975,
p.186] provides a good overview of these two opposing viewpoints:

The proccdaraLists assert that our knowledge is primarily a "knowing how". ._ What
a person (or robot) knows ... is coexistent with this set of programs for operating
with it. ... The declaratiuists, on the other hand, do not believe that knowledge of a
subject is intimately bound with the procedures for its use. They see intelligence as
resting on two bases: a quite general set of procedures for manipulating facts of all
sorts, and a set of specific facts describing particular knowledge domains.

Winograd goes on to describe some of the advantages on each side, and concludes that
the declarative and procedural formalisms are endpoints on a spectrum of modularity vs.
interaction. The ultimate in modularity is exemplified by a set of logically independent
mathematical axioms, a pure declarative representation. At the opposite end, programming
deals explicitly with interactions. The ultimate answer may lie in an appropriate synthesis
of the two extremes. Indeed, a PSA can be seen as an attempt to recover some benefits
of modularity in a pure procedural encoding by forcing all interactions through a single
working memory.

The HSII KSs use a combination of procedural and declarative representation for long-
term knowledge. The procedural is in the form of SAIL code; the declarative consists of
Variables and arrays whose contents are initialized from files at the beginning of a run. In
the HSII POM KS, for example, there are arrays for such things as segment vowel
probabilities, legal syllable state transitions, state transition probabilities and spellings of
syllables as state sequences. Declarative structures such as thete account for 307. of the
total space in POM, but their dynamic use is greater than that figure implies.

[6] UnfoHuna^ly, no dynamic daf» on us» of Knowisdjt in HSII could b» obUin»d.

Page 26 A Comparison of Representation in HSII and HSP Chapter 3

HSP, on the other hand, has no declarative long-term memory — all long-term
Knowledge must be encoded procedurally as productions/ This leads to a number of
difficulties for HSP. The speech task in general seems to require a large number of
knowlodge bases that are representahle conveniently in declarative form; e.g., tables of
probabilities, similarity matrices, dictionaries of spellings, and grammars. When these
knowledge bases must be represented procedurally, there are serious problems with
efficiency and multiple use of the knowledge.

Virtually all of the instances of large uniform data bases can be represented efficiently
in HSII by packing into arrays; and cost considerably more when represented as HSP
productions. The following are examples of this, with comparative space costs given:

Vowel probabilities ("A"-type, T-type, and "LT-type) for each of the 43 possible
segments.

I
HSP uses 43 productions, each of which modifies a new segment hyp to
have three new fields with the "A", "I", and "U" vowel probabilities. Each
production requires 10 wordsr, for a total of 7 Kbits. , HSI! packs the
probabilities into a single 43 entry array, for a total of 1.8 Kbits.

State transition probabilities: the probability that state y follows state x given that
segment z is one of the alternatives adjacent in utterance time to state x.

• If represented in a standard array, a total of 6 x 6 x 43 = 1548 entries
would be required for the left syllable states, and an equal number for the
right. If a sparse encoding were used, the number could be somewhat
smaller since not all pairs of states represent legal transitions, plus many
zero entries could be omitted. In fact, HSII POM stores only 883
probabilities, each packed info 18 bits, for a total of 15 Kbits. In HSP, each
probability value is encoded by a production which responds to a special
WM element containing the context of states and segment; if the context is
the one that the production encodes, the probability will be stored into a
field of the new state hyp. The high cost of 10 words (160 bits) per
production forced the use of a cutoff on the probability value: only values
of .4 or above are represented. This brings the number of productions

[7] Winojrad'e natural languae« understanding sydem [Winojrad, 1972) it • prim« »xample of procedural encoding.
But II also contains some declarative long-term knowledge that is used quits heavily, eg., a set of syntactic

features associated with each dictionary word, and t semantic feature network used for an initial phase of

semantic analysis Thus HSP is more procedural than Winograd's system.

[8] A side problem was the large number of productions which had to be defined. This was solved by making
modifications to the auxiliary programs that MSII uses to initialize the declarative structures, making them

output productions in HSP formal instead. This was don« for POM, MOW, W0M0S end SASS.

[9] A condition procr-ure is used to save space ~ see the end of Section 3.1.4.

MMM*

Chapter 3 A Comparison of Representation in HSII and HSP Page 27

down to a manageable (though still excessive) 589, for a total of 94 Kbits.
The impact on performance of omitting all values less than A should be

minor, but is unknown.

The. second major difficulty with procedurally encoded knowledgei is allowing for
multiple use. When knowledge is encoded in a production it is tied to some particular
condition, and thus cannot be applied under different conditions without duplicating it in
other productions. Declarative encodings do not have this problem since they are
divorced from control information, and any procedural unit that has access to the data can

make use of it.

There are several methods that HSP uses for dealing with the problem of multiple use:

(1) Duplicate the knowledge When the number of uses is small, it does little harm

to just duplicate the knowledge in the several productions that use it.10

An example of this in HSP is the dictionary of word spellings. The MOW KS uses
these for recognizing words from syllables, while the WQM KS uses them in the
opposite direction for prediction of syllables from words. Thus the spellings of
words as syllables are duplicated in HSP, whereas HSII has a single copy in
declarative form globally accessible by both KSs.

Often when knowledge must be duplicated in a number of productions, it Is possible
to use condition and action procedures (see the end of Section 3.1.4) to maintain
a single shared copy. Of course, this is only possible if the different uses are just
minor variations, but they often are. And this sharing does solve the multiple use
problem without deviating from pure procedural encoding.

(2) Subroutines. Knowledge with multiple uses can be encoded in productions that
respond to a special WM condition (the subroutine call) and make the knowledge

available (to the caller) by appropriate WM changes.

This method is used for the syllable state transition probabilities in POM. There are
three conditions for use of the knowledge, depending on whether the segment in
question is the first, second, or third alternative for a gh'en time region. These
three productions each create a special WM element which contains the context for
determining the probability. The appropriate probability production responds to
this new WM element and, using the information recorded there, returns the

, probability as a change to a known field of the: new state hyp.

(3) Copying into WM. In the case where multiple conditions for use of some
knowledge share a common subcondition, that common condition can trigger a
production which deposits the knowledge into WM. It is then available in

declarative form for any use.

[10] Th« problom of upd»linj (ht muMipl« copitt could b» »»rioui in iom» cireumiUnc»», tMhoufh it WM no» in

tho KSs trniulaUd.

Page 28 A Comparison of Representation in HSU and HSP Chapter 3

A version of SASS was written to try this approach for the rules of the grammar.
The appearance in WM of a word or phrase triggers the copying into WM of all
rules that have it as a constituent (one copying production per rule). These WM
elements representing grammar rules remain for only a single cycle, which is
long enough for use by any of the recognition, respelling, prediction, or postdiction
productions that care to respond to the original word or phrase. Time constraints
did not permit debugging and running of this SASS version, so it is not known
whether the overhead of the continual creation and deletion of grammar rules in

WM is prohibitive.

These means for controlling the problems of multiple use are sufficient for the current
HSP system, but it remains to be seen whether or not they break down when more

complex systems are attempted.

It seems appropriate at least to entertain the possibility of adding a facility for long-
term declarative knowledge to the HSP architecture. Such a facility was spurned during
development of HSP" to keep the architectural comparisons pure. But if HSP were a
development system rather than a research tool, immediate efficiency concerns would
probably force a number of compromises such as this. |

The syllabie state transition probabilities in POM .provide an example. As mentioned
above, the current scheme uses two PS cycles: the first involves 6 productions (3 for the
alternative segment positions with left syllable states, and 3 similarly for right) which
create a special WM element containing the relevant context. This creation triggers on the
next cycle some subset of the 589 productions that encode the probability values, at most
one of which will actually fire.

Suppose that the simple expression language used in HSP productions were augmented
with a facility for accessing a multidimensional array. Then there could be just a single
cycle: 6 productions which bind the relevant context to variables and then access the
probability from a three-dimensional array. This would save the space for the 589
separate productions (about 100 Kbits), and remove the extra cycle and the creation and
deletion of the special WM elements. It would also permit inclusion of the array vjilues
below .4 which the current scheme eliminates. Storing the full array would take about 50
Kbits in HSP, but this could be reduced substantially by packing and using a sparse
encoding.

3.1.4 Space Efficiency

A comparison of space requirements for representation of long-term knowledge in HSII
and HSP is not an easy task. The two systems have many differences incidental to the
architectural differences we are interested in comparing. Thus we cannot be sure that the

[11] le, Ihore is ■ production which responds)o lh« tppsarancs of such in element in WM »nd deletes it on th»

following cycl«.

Chapter 3 A Comparison of Representation in HSII and MSP Page 29

i

sizes don't reflect programmer differences, degree of optimization of the language, or
improvements due to HSP being an extra iteration beyond HSII (to name just a few).
Nevertheless, the data do provide a comparison that is accurate enough for our purposes.

Although 12 HSII KSs were translated to HSP, usable space comparisons could be
obtained for only two: POM and RPOL, as shown below in Figure 3.3. Most of the other
10 are incomparable because of simplifications introduced during translation. Several
actually ceased to exist as HSII KSs, making it too difficult to obtain good HSII size data.

size (Kbits) ratio
KS HSII HSP HSP/HSII

POM 220 238 1.1

RPOL 30 30 1.0

Figure 3.3 Space comparison of long-term knowledge in HSII and HSP KSs

Because of the special problems declarative knowledge poses for HSP, space
accounting needs to be done separately for procedural and declarative HSII knowledge. In
the figure above, the ratios are very close to 1; but RPOL is virtually all procedural
knowledge, and POM is mostly so (its declarative/procedural split is .3/7). As we shall see
below, declarative knowledge alone yields HSP/HSII space ratios significantly larger than 1.

A detailed space analysis was carried out on the POM KS, faking care to separate
declarative from procedural knowledge. This is shown in Figure 3.4, with sizes broken
down into a number of functional categories. The categories are ones the HSP productions
naturally form. HSII POM had to be mapped into these categories on a stafement-by-
statement basis, though the mapping was fairly clean. The procedural sizes include modest
amounts of local working memory (e.g., local variables) since this could not be easily
separated from the long-term knowledge.12 Although all long-term HSP knowledge is
procedural, only that par, translated from HSII procedural knowledge appears in this

comparison.

[12] Thi« would b» inappropriaU for KSi ouch at SASS which hav» larft amounJi of local workinj memory.

Page 30 A Comparison of Representation in HSII and HSP Chapter 3

size (Kbits) ratio
HSII HSP HSP/HSII

7.3 5.7 .8
12.1 5.3 .4

0 1.0 --
2.4 2.7 1.1

24.2 9.4 .4
22.4 14.9 .7
1.7 3.8 2.2
2.8 5.8 2.1

64.7 31.6 .5
2.9 5.1 1.8

16.6 20.7 1.2

functional unit

Utterance boundary handling

Gap (silence) handling

Segment vowel probabilities

Total vowel probabilities

Syllable nucleus finding

Nucleus context building

Segment rating normalization

Combined vowel probabilities

Syllable stdte transitions

Endstate boundary time setting

Syllable recognition

Total 157 106 .7

Initialization 85.3 0 3

Display 27.9 0 0

Figure 3.4 Space comparison of procedural long-term knowledge in HSII and HSP POM

Note thbt HSP has nothing under the Initialization category. The function of
initialization in HSII is to set up the contents of some variables and arrays with long-term
Knowledge (from auxiliary files), and to clear the contents of others being used for KS-
local working memory. HSP has no need for either of these functions. The Display
category is also given separately since display productions were left out of HSP POM to
reduce the total translation effort. Also, the display facilities are less essential in HSP
than HSII due to the central tracing facility in HSP. The internal workings of an HSII KS
are not so easy to trace since they are not under interpretive control, although it is
possible to trace calls to HSII kernel functions (e.g., Blackboard accesses).

The "segrpent rating normalization" and "combined vowel probabilities", though pure
procedural, have unusually high HSP/HSII ratios. This is due to the inability of an HSP
production to deal with WM element list fields of arbitrary length. In both the above cases
some operation is being performed on all the alternative segmerf hyps at a given time
position, as listed in a field of an "option segment" hyp. This requires a separate
production for each possible total number of alternatives. In this case the maximum
number is only three, by convention with the KS which creates the segment hyps. If it
were larger, as it may well be in other cases, the space cojfs would be much more serious.
By comparison, a single iteration statement suffices in HSII to handle any number of
alternatives.

There are a couple of possible explanations for the 307. decrease in total size from
HSII to HSP. First, HSP productions can be more compactly encoded because they are

Chapter 3 A Comparison o(Represenlation in HS1I and HSP Page 31

interpreted. Secondly, USP can represent simple conditions and complex searches of global
working memory r.iore concisely than HSU. But the substantial variation in the space ratio
from .4 to 2.2 across the separate categories belies such simplistic explanations, and a
complete explanation ic buried in many separate details.

Data on long-term declarative knowledge, shown in Figure 3.5, is available ♦'■om all
of the translated KSs since it can easily be estimated from source listings in both systems.
The results are given individually for all the large structures, and each is classified
according to its type. Recall that the HSP data actually refers to that' part of its all-
procedural long-term knowledge which is a translation of declarative HSII knowledge.

size (Kbits) i atio
type HSII HSP HSP/H5II

array 20 25 1.3
array 1.8 6.9 3.8

bit array 1000 1100 1.1
spellings 30 30 1.0
spellings 29.6 24.3 .8
network 30 35 1.2
network 31.1 100 3.2

r.ource

(1) POSSE similarity matrix

(2) POM vowel prob

(3) WOSEQ word adjacency

(4) MOW syl-word diet

(5) POM state-syl diet

(6) SASS grammar

(7) POM syl state trans

Total (excluding (3)) 140 220 1.6

Figure 3.5 Space comparison of declarative long-term knowledge in HSU and HSP

The WOSEQ bit array (3) is an unusual case deserving special explanation. WOSEQ, the

word sequence hypothesizer, uses an n s n bit matrix (where n - the number of words in
the vocabulary, or 1000 in a full HSII system) to provide a fast test for grammatical
adjacency of words. Since each entry requires a production of about 64 bits in HSP, the
consequences couid be disastrous, however, the sparseness of the matrix saves the day:
only 17,000 productions (rather than a million) ar^ necessary since the matrix has ores in

only 1.77, of its entries.

Excluding (3), the total ratio comes to l.Sj i.e., a 507. size increase in translating from
HSII to HSP. But there is considerable variation among the individual cases. The differences
between the ratios for (1) and (2) can be completely explained by the fact that array (2) is
totally represented in HSP, while array (1) is not since it has only 357. non-rsro entries.
HSP's representation of arrays acts as a sparse encoding mechanicm: productions are

Page 32 A Comparison of Representation in HSII and HSP Chapter 3

1 T
required only for the non-zero entries while the zero values are handled as the &»f»-M.
The relatively small ratios for (A) and (5) (spellings, or arrays of «.(rings) can be explavned
by a peculiarity of SAIL: there is a large (72 bit/ fixed overhead »or string represe->laUon.

The HSP sizes for both Knowledge types (Figures 3.4 and 3.5) are biased upward due
to non-optimal encoding of productions. In particular, HSP condition elemenfu ^re
represented using the same type of list structure as WM elements, requiring 3 wordi per
field. A careful encoding could reduce this cost by a factor of between 2 and 3, giving an
overall reduction in space of as much as a factor of 2. However, if should also be noted
that the SAIL compiler does not produce highly optimal code, so that a similar (though
probably smaller) bins exists in the HSII data.

Other measures besides bit counts help to fill out the picture for pr dural
knowledge. One is token counts; i.e., counts of lexical atoms, as would be recognize y the
KS language compiler. They presumably provide an indication of program '.e as
perceived by a human. The other is statement counts. For SAIL, the usual def .on of
statement is used; for HSP, the sum of production, condition element, and act'or. ement
definitions is used, corresponding to a view of condition and action elements as 'jimple
statements and productions as compound statements. These counts (shown below in figure
3.6) mainly provide additional support for the bit counts of Figure 3.4 — the
correlation is good for the most part. Functional units containing declarame knowledge
have been omitted since token and statement counts do not make sense for \bnm.

[13] Sines HSP array repreEentalions makt use of (he PM index efficiency mechanism (described in Hi« following
chapter), i< might be approprule to include tha PM index rpace even though if is inessential (ie., is only for time

efficiency) In general, a one-dimensions,! array requir«i about 100 bits per production for the PM index. For

example, the ratio for (2) would increase from 3 8 to 7 if we included PM indxx costs. However, we ehoie no*

to do so throughout Figure 3.5.

V sz

Chapter 3 A CompariGOn of Representation in HSII and HSP Page 33

functional unit

Utterance boundary handling

Gap (silence) handling

Total vowel probabilities

Syllable nucleus finding

Nucleus context building

Segment rating normalization

Combined vowel probabilities

Endstate boundary time setting

Total

Initialization

Display

token (:ount ratio sta [ement count ratio

HSII HSP HSP/HSIl HSII HSP(P+CE+AE) HSP/HSII

2Jl 257 .9 33 2+ 6-»- 10 .6

419 244 .6 50 3+ 9+ 4 .3

119 146 1.2 14 3+ 5+ 3 .8

551 387 .7 66 8+ 23+ 11 .6

964 817 .8 121 22+ 39+ 6 .6

eo 203 3.4 5 3+ 8+ 6 3.4

95 312 3.3 8 3+ 8+ 9 2.5

123 239 1.9 13 4+ 12+ 4 1.5

2622 2615 1.0 310 48+110+ 53 .7

2627 0 0 337 0+ 0+ 0 0

1367 0 0 163 0+ 0+ 0 0

comparison of procedural knowli sdgo in HSII and HSP POM

Space costs in HSP would have been much higher if it weren't for the capability of
sharing common subparts among productions. Any sequence of condition elements (even a
single element) can be defined in a named list (called a condition procedure), and then this

single copy can be referenced in multiple productions. "These procedures can even be
parameterized for cases where multiple uses are similar but not identical Acho"
procedures provide the analogous function for action elements. These capabilities are
used heavily: the 906 productions of the POM KS have a total of 2214 condition elements
and 1457 action elements, but only 107. of condition and 87- of action elements are
separately represented. Thus a factor of about 10 in space is saved in this manner.

3.1.5 Knowledge Unit Size

The HSII and HSP architectures display a large difference in the size of knowledge
units that are evokable by global working memory conditions. For HSII we count an entire
KS and its PRE (precondition) as a single unit,15 while for HSP every individual production

counts as a unit.

fl41 Th» Itvtli ofaubflruelurt to produt.d .r. «r.n.piftn« lo «ht production inJtfpr.Ur. Tht only «ff.c« on

op*r.»ion it . r«lll|ibto slowdown du. lo U.vr.in, (IN .xir. I.v.1., and <o ..■itmn(of p.r.m^.f. lo

procedure viriablsf.

I

(151 An HSII KS module eo-nbin.. on, or more KS. (.nd ...oci.l.d PRE.) in«o . l.rf.r uni«, with .om. da».

„Wuctur.. .hared among KS. Eg. Ih. POM and MOW KS. ar. actually combln.d "••'"«'• '"°du,• ""•d

POMOW. S»lll, w. will con..der mdmdu.l KS. a. uni». b.c.u...«h«y ar. «h. amall.t» .nd.p.nd.nlly .vokabl.

unilt.

Page- 34 A Comparison of Representation in HSII and HSP Chapter 3

Figure 3.7 shows the number of HSP productions obtained in the translation of the
\2 HSII KSs. The most reliable count is for the POM KS since POM was es-entialiy
completely translated. Simplifications were made in the translation of the other KSs, so
their production counts are low — perhaps as much as a factor of two in some cases. One
reason there are so many productions is that many are simply an enumeration of cases* for
a single situation. For example, the WOM KS has a production for every word in the
vocabulary, and POM has a production for every pair of right and left syllable halves that
combine to form a valid syllable. Thus Figure 3.7 also shows production counts adjusted
by discounting all such large enumerations.^

KS count adjusted count

SEG 50 4
POM 90S 82
POSSE (TIME and SEARCH) 215 22

WOMOS (WOM and MOS) 254 30
MOW 491 15
SASS (early version)

RECOG 305 90
RESPELL 234 76
PREDICT 192 78
General 30 30

SASS (new version)
RECOG 172 17
General 30 30

RPOL 39 39
Time propagation 32 32

General 22 22

Total (early Sass) 2770 520

Total (new Sass) 2211 293

General includes: hyp merging, updating necessitated by new or deleted links,
redundant link elimination, hyp time consistency checking.

Figure 3.7 Production counts for KSs in HSP

HSP knowledge units average about 250 time- smaller 'nan HSII units, or 30 to 50

[16] These adjusted counts are roughly the actual counts that would exist if some special facility for declarative

long-term memory en.sled in HSP.

Chapter 3 A Comparison of Representation in HSII and HSP Page 35

times smaller if the large enumerations are discounted. These smaller units go hand-in-
hand with a greater degree of data-directed control, as discussed in Section 3.3.1
below, permitting higher parallelism. It is speculated that smallness of units also has
benefits for other problems such as performance analysis, but this thesis produces no
evidence of this. HSII units are as large as they are partly because of a concern that
increased interprocess communication costs with smaller units may swamp the increased
parallelism [Fennell, 1975, pp 27-28} But more significantly, in the current uniprocess
HSII system there seems to be nothing to gain by making units smaller than necessary to
obtain the desired granularity of directionality control (focussing).

3.1.6 Mixture of Condition and Action

The code for a HSII KS is typically a complex mixture of condition evaluation and
action. Blackboard writing i an occur at any time during KS execution and tends to be
freely intermixed with Blackboard reading, and with reading and writing of local data
structures. Even if with some KSs the writing did all happen at a particular place in their
execution (e.g., the end), there is no feature of the language that would accentuate this, let
alone enforce it. The opposite is true of HSP: every unit of knowledge (production) is
strictly partitioned into pure condition (read-only) followed by pure action (writing). This
difference between the two systems has much to do with exploiting parallelism (see

Chapter 5).

3.2 Working Memory

The short-term or working memory holds the dynamic context of processing for a
single utterance, and is cleared to begin a new utterance. Both HSII and HSP make a
distinction be veen Rlobal and local working memory, the global is accessible to all (long-
term) knowleot. units and is the source of the data-directed control; the local is that used
within a single knowledge unit and not accessible by other units. The two systems have a
strong distinction in the ratio of global to local working memory use.

3.2.1 Local

HSII KSs have arbitrary, and often quite large, local data contexts made up of integer
and real variables, arrays, sets, strings and associative structures. These local contexts

[17] Tha number of HSP production! for lorn« of th« KSi it «fronily dep«ndtnt on th« voe«bul»ry ind jrimmar
size, and the count« given above ire bsied on i «really aimplified grammar and 100-word vocabulary selected
from HSII's large grammar and 1000-word vocabulary However, the adjuslad counli ere not «ffeeftd, to th«

factor of 30 to 50 remains valid.

Page 36 A Comparison of Representation in HSII and HSP Chapter 3

cannot be accessed by other KSs, and thus are strongly distinguished from the
Blackboard, which can be accessed by all KSs and is used for all KS communication (at
least theoretically). ^ The HSP architecture is remarkable for an almost total absence of
any such local data contexts. The only exceptions are a small variable memory which holds
bindings of variables over the scope of a single production execution, and an even smaller
temporary arithmetic expression memory. Thus virtually all dynamic data in HSP must be
stored in the global, shared WM.

Some examples of how local data structures are used by HSII POM are given below.
They show how HSII obtains gains in efficiency that are not possible in HSP.

In POM, part of the condition for identifying a possible vowel segment as a syllable
nucleus is the existence of a MXN (amplitude maximum) hyp within the time range
of the segment. Testing this condition requires a Blackboard retrieval operation,
and must be done more than once tor some segments. Thus, for efficiency the
condition is pre-computed for each segment and stored in a local boolean array.

In POM, the complex procedure that identifies syllables operates in the context of a
syllable nucleus segment and segment alternatives to its right and left (in utterance
time). Before processing begins, the entire context is read into local arrays (the
identity of the segments, their ratings, etc.) to obtain big savings on access costs.

tin the most recent SASS KS, the partial parse trees obtained in attempting to
parse a language fragment are stored locally in a specially designed data structure.
Earlier SASS versions used hyp and link structures on the Blackboard, and were
hopelessly slow as a result.

The following chapter on time efficiency estimates the efficiency loss HSP suffers by
having no local WM.

3.2.2 Global

Since the total burden for working memory in HSP is to be supported by the globally
shared WM, there is a requirement for generality and flexibility in the WM element
structure which is missing in the case of the HSII Blackboard.

In HSII, Blackboard elements are of only two types: hyps and links; and each has a

[18] This it not itrlcily fru» in th« real HSII. Savtnl KS» cm bt eompiltd Into • linfl« modult ind ihart conttxl

thai Is global to the modulo. In (hi« cat«, ih« local conltxt «till cannot b« acc««t«d by KS« outtid« tha modulo.

[19] Again, fhe raal HSII hat axcapiion« in that KSs occasionally aha'a global data atructuraa not in Ih» Blackboard.

Chapter 3 A Comparison of Representation in HSII and HSP Page 37

certain minimal size due to predefined fields. New fields may be added dynamically, but the
predefined fields are immutable.

By comparison, elements in the HSP WM have no predefined fields20 and thus may be
used to conveniently represent arbitrary symbolic structures. Some of the elements do
represent hyps and links, and these by convention have many of the same fields as their
analogs in the HSII Blackboard. The remainder of the WM elements (about half of those
created during the HSP test run) encode data and control information local to some KS. In
addition to these whole WM elements, KSs also commonly attach extra fields to elements
representing hyps and links.

Space efficiency is a potential sore point with WM in the current HSP system, since
WM was designed for ease of implementation and flexibility rather than efficiency. In HSII
the predefined fields of hyps and links are tightly packed into fixed fields, with some fields
as small as a single bit. In HSP there are no predefined fields, so a field identifier must be
stored with every field value. The values are not packed, so each takes a full word (16
bits). And finally, the basic WM element is a linked list structure, adding an extra link word
to each field. The net result of these inef'iciencies is a space ratio (in bits) of roughly 3
to 1 for HSP vs. HSII elements. Some of this difference is inessential implementation
difference. But the HSP requirement for generality and flexibility does make it difficult to
have predefined or packed fields.

•

Furthermore, the lack of local working memory in HSP results in more elements in the
HSP WM than the HSII Blackboard in comparable runs. In the POM runs this ratio was
about 2 to 1, but in other KSs which make heavier use of HSII local memory (e.g., the new
SASS, or new MOW using WIZARD), it could be much larger — a full order of magnitude or
more. For example, the new SASS can in the course of a run easily create 1000 internal
nodes representing partial parses. If this SASS version were implemented in HSP, those
1000 nodes would have to be represented somehow as WM elements.

3.3 Control

The final aspect of representation to be compared in this chapter is that of control. As
with the previous aspects, there are some striking differences in the way HSII and HSP
represent control. We distinguish low-level (intra-KS) control from high-level
(directionality) since HSII has separate mechanisms for the two forms.

[20] Excopi (hat of CREATOR (■ rcfvrtnc« to Ihg production that crotlod it), but that it for diafnoitie us« only.

\,, .---*• ^JÜü#*

Page 38 A Comparison of Representation in HSII and HSP Chapter 3

3.3.1 Low-level (Intra-KS) Control

A primary difference between HSII and HSP is the degree to which data-directed
control is used. As shown previously in Figure 3.7, HSP has a great deal more data-
directed knowledge units than a corresponding HSII system. For the POM + RPOL
configuration the ratio is 500 to 1. And dynamic behavior presents a similar picture: in
equivalent test runs HSII had only 4 invocations (1 of POM, 3 of RPOL), while HSP had
1944 production invocations, giving a ratio again of almost 500 to 1.

With so few invocations in the HSII run, it is apparent that virtually all the control is
supplied by SAIL control structures within the KSs. For every data-directed invocation
there were on average 250,000 machine instructions executed within the KS,
corresponding to roughly 25,000 SAIL statements.

In the HSP run, each data-directed invocation resulted on average in 2.8 condition
element evaluations and .3 action element executions. The condition evaluation process
represents a form of backtracking search control;21 action execution is unconditional and
sequential. We can thus conclude that the control of condition evaluation dominates in
HSP. Yet data-directed control has a very strong effect since it intervenes once for every
3 condition or action elements.

This high degree of data-directedness in HSP is principally responsible for high
parallelism (see Chapter 5), and is speculated to also have a positive effect on other areas
such as augmentation and performance analysis. However, it has a strong negative effect
on time efficiency due to the high overhead of data-directed invocation (see Chapter 4).

3.3.2 Higher-Level Control (Directionality)

Even though of crucial importance in a global perspective, the issue of directionality
control could not be addressed within the limits of this thesis, and existing HSP systems
have bypassed the need for scheduling knowledge. But the way seems clear for
incorporating directionality control into HSP, although its viability still requires
demonstration.^2 In a pure PSA such as HSP there can be no separate high-level control
mechanism — directionality must be represented as just more "'ow-level" control. Existing
productions can be augmented to make them conditional on various properties of the data
matched by the production condition (e.g., validity, or closeness of temporal adjacency
match) and on the reliability (strength) of the production itself. Dynamic thresholds used
by these added conditions can be represented as separate WM elements. Such methods
are used in HSII SASS [Mostow and Hayes-Roth, 1978], and the HSP translations of SASS
closely mimic them.

[21] However, since vary little searching is actually dona, it becomes mostly sequential
■

[22] Since conflict resolution mechaniams can provide help with directionality control, we might want to add

conflict resolution to HSP.

"t^a

Chapter 3 A Comparison of Representation in HSII and HSP Page 39

HSII has a sophisticated focussing mechanism [Hayes-Roth and Lesser, 1977] which
schedules queues of potential KS instantiations and adjusts dynamic thresholds when
appropriate (e.g., to encourage additional activity in a particular region of the utterance).
Mostow and Hayes-Roth [1978] argue that proper focussing depends on complex global
properties of the working memory, and that such properties cannot be described by the
small set of simple conditions in a production. But it may be possible in HSP to represent
these complex global properties by WM elements that are constantly updated by special

productions monitoring changes to the global state.23 Then the task productions (some, not
all) would be augmented with conditions sensitive to the representation of global state: i.e.,
they would be self-scheduling. The workability of such a scheme in HSP remains ^or the

time being a source of speculation.

Summary '

No separate summary for this chapter is given here. The Representation and
Architecture section of the Conclusion (Chapter 7) includes a summary of the main

assertions of this chapter.

[23] Though (hese producliont have • special function, they are not to be treated specially by the PSA, They ert

just mixed in with all the other proouctions.

■" -l^***

Page 40 Time Efficiency Chapter A

■*<

Chapter 4 Time Efficiency Page 41

Chapter 4

Time Efficiency

This chapter provides an analysis of time efficiency in HSP and a comparison with HSII
time efficiency. The bulk of the analysis is based on equivalent HSII and HSP
configurations containing only the POM (syllable recognizer) and RPOL (rating policy) KSs,
since these two are the only ones completely debugged in their HSP form. The POM +
RPOL HSP configuration contains 999 productions, classified as follows: POM (90« , RPOL

(39), Time propagation (32), and General (22). Only a single run of each system ' 311 and
HSP) was made, and the input was limited to the segments of a single syllable .the word

"DID") from an utterance. This last restriction was partially motivated by the slowness of
HSP, but more importantly by the sma;l üddress problem on C.mmp (see Chapter 6), which
limited the total number of elements in WM and the number of changes per PS cycle. These
limits could be removed only by reorganizing the HSP system to do more overlaying, and it
did not seem worth the substantial extra effort.''

We begin with a discussioi of several existing efficiency mechanisms in HSP, proceed
to a direct comparison of execution time in HSII and HSP, and end with the identification of
some remaining sources of inefficiency in HSP. The possibility of exploiting parallelism for
time efficiency will not be dealt with here, as it would only complicate matters; the
following chapter is devoted entirely to parallelism. Thus, for the time being HSP will be

considered a uniprocessor architecture to be compared with the current HSII. HSP's very
low multiprocessing overhead (which is, of course, still largely present when running in
uniprocessor mode) is what allows us to do this.

fl] Creation of the POM ♦ RPOL HSII configuration for comparison with HSP was not easy Th» POM and MOW
(word recognizar) KSs arc intermingled within a single HSII module, and (hut MOW had to be painstakingly

excised.

[t] General includes: hyp merging, updating necessitated by new or deleted links, redundant link elimination, end hyp

time consistency checking.

[3] In what follows, (his test 'un is often referred to simply as "the POM run", though it is actually POM plus

RPOL.

[4] Specifically, subpieces of the WM index and perhaps the lists of current changes would have to be overlayed.

WM elements, productions, and subpieces of the PM index are already overlayed.

[5] HSII Ka» evolved (devolved ?) since 1974, the lime of Fenneil and Leaser's study of parallelism [1977], to

become a uniprocessor architecture.

Page a2 Time Efficiency Chapter 4

4.1 Existing Efficiency Mechanisms

In order to get HSP off the ground at ail it was necessary to incorporate several time
efficiency mechanisms. Without them, testing and debugging would have been so slow as to
be impracticable. They all have analogues in the HSII system, and some are closely related
to efficiency mechanisms in use ir other PSAs. Three of the most significant of these
efficiency mechanisms are discussed below, including an assessment of the size of their
effect.

4.1.1 Production Memory Indexing

HSP contains a pre-compiled index to all productions in its Production Memory (PM).
This index takes advantage of the fact that every production begins with a condition
element applying explicitly to a WM change: the type of change and identifier of the

changed field provide the first two levels of indexing. Beyond that, three additional levels
are possible using the first three (presumably fixed) fields of the changed WM element.
For example, there is a POM production for creating legal next syllable states from a newly
rated "AL" state, which begins with the two following condition elements:

< MOD SST UVLD > 8ST= < HYP LSE6ST "AL" DSEGS/(80S **) >

This production is indexed successively through the five levels by HDD UVLD HYP

LSEGST "AL". In other cases all five levels of indexing need not necessarily be used. For

example, a production which checks for consistency of times on hyps with a changed end
time is indexed with only three: MOD ETI ME HYP.

The function of the PM index is to narrow the number of productions to evaluate in
any one cycle from (the total number in PM) times (the number of changes) down to a
much smaller number. Its effect is dramatic: in the POM run there were 375 changes, so
with 999 productions in PM there would potentially be almost 375,000 productions to
evaluate. The actual number evaluated was only 1944, representing a savings of nearly a
factor of 200. In general, the PM index reduces a linear dependence of execution time on
PM size to a sublinear one. In the POM run there were on average only 5 productions
evaluated per WM change. In a larger system, say with 10,000 productions, an average
number of 50 might at first be expected. But since new productions tend to respond to
different changes than already-existing ones, we can expect instead that the average
number evaluated per change will be much less than 50 (and perhaps not much greater
than 5).

[6] An early decision was mad« to rflly on hand-compilalion of lh« PVi ind«K, \o save the effort of bL.ldinf •

compiler. This has turned out to be a mistake. Many of the KS bugs that cropped up along the way were due to

errors In the manual building of the PM index. In relrotpect, building of the compiler looks like ■ relatively

simple task.

[7] This latter Is absent for NEW and DEL changes.

Chapter 4 T-in Efficiency Page 43

The PM index is a filter in the sense used by McDermctt, Newell, and Moore [1978] in
their investigation of efficiency in the PSA called PSG. The filters discussed there use
knowleiige from one or more of the fol'owing sources: (1) the occurrence of condition
elements in productions, (2) which WM elements support which condition elements, and (3)
the relationship among condition elements of a single production. HSP's PM index uses
source (1), but only for the first two condition elements of each production: the one
applying to the change, and the one applying to the changed WM element. Filtering based
on information about condition elements after the first two is unnecessary because they
do not normally require any WM searching for their evaluation. This is because of the use
of explicit WM element references, discussed in the •lexl section.

4.1.2 Explicit Working Memo y Element References

In HSP many WM elements contain explicit references to other related elements. This
allows productions to locate elements relevant to their operation by simply following
references, beginning at the element which triggered the production. For example, a
production which wishes to apply some condition to the upper hyp of some linK need only

bind a variable (say 8UH) to the upper hyp reference, and then use the "=" construction to
apply a condition element to the upper hyp, as follows:

... < LNK ... UHYP/8UH ... > 8UH= < ... > ...

In many productions, every successive condition element applies to a WM element
already located by an explicit reference earlier in the condition evaluation. Such
productions require no WM searching at all for their evaluation.

The use of such references is quite extensive overall: of 22H condition elements
encoded in HSP POM, only 2.37. require WM searches for their evaluation. The dynamic
behavior gives a similar picture: of 54S7 condition element evaluations only 1.27 required
WM searching; the remainder were applied directly to a single element located via explicit
references.

These explicit references are a natural reflection of HSII and the references that
Blackboard elements contain. But it is an unorthodox feature for a PSA, and there are
some obvious disadvantages. One of the most serious is the error state th^t occurs when
some element is deleted while other elements still have references to it. The difficulty
occurs becau^ ? the linkage bt.>veen elements has been made explicit, and hence
unconditional. A scheme which relied on repeated searching to establish the linkage would
not have this error problem, but would pay with longer (perhaps much longer) execution
time.8

[8] Perhaps (ha uMlmal» solution lo this difficulty li to design new hardware srchilectures thai will allow the
luxury of large amounts of (seemingly inefficient) searching. After all, PSs are based on an assumption of high
recognition-action ratios So maybe their trut benefit will only be realized when new machines free us from
potty efficiency concerns.

nuiiiiM riiiTii ■« ■ ■ » ■■Minn -x_ -

Page ^4 Time Efficiency Chapter 4

The savings in execulion time provided by explicit references is quite lr-ge. It is
possible to obtain an estimate of the savings using data from the POM run: the number of
condition elements evaluated (+ and -), the total number of mat'hes of condition elements
to WM elements, and the size o* WM. The calculation was performed for three selected
cycles of the POM run. The smallest one (10), a medium one (15), and the largest one (9).^
The results are shown in Figure ^.1 in terms of how much the use of explicit
references speeds up execution time 10

. WM size Factor speedup provided by refs

Cycle 10 83 21
Cycle 15 64 35
Cycle 9 83 52

Figure 4.1 Estimated factor of speedup with use of explicit refs

4.1.3 Working Memory Indexing

In HS1I, hyps in the central Blackboard are indexed both by level and by utterance-
time region to allow efficient retrieval and searching. Thus it was natural to include a WM
indexing mechanism in HSP. The exact mechanism chosen is a two-level association list for
WM that groups elements according to the values of their first and second fields. ^ For
WM elements which are representations of hyps, this corresponds to HSIFs indexing by
level; there is no indexing by time region in the current HSP version. For example, in HSP
all syllable hyps, which are of the form < HYP SYL ,,. >, can be immediately obtained
from WM by associating first along HYP and then along SYL

The effect of such a mechanism is to reduce the amount of WM searching necessary to
match a condition element. If a condition element begins with one or two fixed fields
(which contain constants rather than unbound variables), ^ then the search for a match
can be narrowed down considerably. The effect of this could be very large, except that
the use of explicit WM element references has already made WM searches relatively rare.
Also, it must he remembered that WM size is artificially low in these POM runs. If the

[9] By cycls size we mean, roughly, the number of produeiiom evaluated. A more precise definition appears in the

following chapter.

■

[10] This calculation was performed assumint no WM indexing mechaniim (see following section). But obviously the

indexing would be needed and would play a much larger role if explicit references were not used.

i

[11] The resulting requirement that all WM elements begin with two fixed fields is only s minor nuissnee.

[12] In practice this is almost always the case.

»>.-

Chapter 4 Time Efficiency Page <35

number of KSo increased by a factor of 5 to 10, and utterance length by 10 to 20, we can
anticipate as much as a 100-fold increase in VVM size.
indexing would be much more efiective.

13 Under these circumstances WM

Of the 66 WM searches that occurred in the POM run, none were of the entire WM, 2
were after indexing one level, and 64 were at the second level (and thus most efficient).

HSP's WM index is related to a PSG filter [McDermott, Newell and Moore, 1978] which
makes use of knowledge about which condition elements are supported by a WM element
(called source (2) above). However, it coes not relate WM elements to specific condition
elements, but rather classifies WM elements according to conditions commoniy tested by
condition elements (i.e., the values of the fir t two fields). The index must be updated
when elements are added to or deleted from vVM, bu' t much lower cost than matching
against all condition elements as in the related PSG filter.

4.2 Comparing HSII and HSP

An execution time comparison of HSII and HSP is a difficult task due to many
differences in the underlying systems, but is nevertheless crucial to a study such as this.
There are several avenues for cutting through the inessentia', differences. None is very
satisfactory on its own, but in concert they produce a resscnabiy believable comparison.
In any event, the attempt at comparison is instructive in its own rip,nt.

The base data shown in Figure 4.2 is from the : gle run et the POM + RPC.
configuration operating on input segments for the worj 'DID". The separation of HSP time
into POM/RPOL could not be conveniently obtained due to the accounting being tied to
individual productions, at which level POM and RPOL are indistinguishable. The data giver
a factor of 255 as a starting point for the HSII - HSP comparison.

[13] WM size increase should be roughly linear with uHertncs lentth, but no! (e IO wi!h the number of KSe
since activity will stretch out over more cycle».

Page 46 Time Efficiency Chapter 4

HSII (sec) HSP 'sec) factor

POM PRE 1.30
POM KS . . 75
RPOL PRE .76
overhead ,79

Total 3.60 917.0 255

Note: HSII took in addition 5.36 sec for initialization. HSP has no analogue.

Figure 4.2 Base execution tin as for HSII and HSP

Since the time comparison is based on a single, quite small run, there must be
something said about its typicality. First, a single syllable is the largert unit which POM
operates on, and there is essentially no explicit interaction between syllables within POM
(that is relegated to other KSs, notably MOW, the word recognizer). Thus ROM's behavior
on a total utterance is to a first approximation just the sum of its behaviors on sections of
the utterance centered around each syllable nucleus (vowel segment). Next, we can argue
that since POM is "table-driven" with respect to the identity of syllables, the same basic
pathways are exercised for "PID" as for any other syllable of the same length. The only
source of variation still of concern is syllable length. Its effect is unknown, and may be
quite large. In fact, we have reason to expect that longer syllables1 would take
proportionately longer in HSP Jhan HSII — perhaps a half to a full order of magnitude. This
is because of the combinatorics of the syllable state transition networks, and the fact that
HSII is relatively more efficient in processing these networks.

There is the more serious issue of typicality of POM and RPOL versus other KSs. On
the positive side, POM is one of the largest, most varied of all the KSs, and thus embodies
a representative collection of KS activities. Yet POM is not typical. Three other KSs
(WOSEQ, SASS and MOW with the WIZARD procedire) account for perhaps two-thirds of
the total activity in a ful! HSII run, and they are dramatically different from POM. They
have much higher ratios of declarative to procedural knowledge (about 10:1 compared to
only 1.2:1 for POM), though this does not directly affect time efficiency. More importantly,
these KSs all rely to a greater extent on the efficiency of local working memory and
control than does POM. Their activity tends to be more repetitive, i.e., many iterations of a
small computational cycled A direct translation of these KSs into HSP would be a serious

[14] Having two or more c isonanla on on« or both sides of the vowel.

[15] SASS searches a grammar network, MOW-WIZARD searches a atals-transiti i network representation of
words, and WOSEQ searches for left and right extensions to word sequences that «re both grammatical and

highly rated.

Chapter 4 Time Efficiency Page 47

mismatch of task to architecture, yielding, unbearably larp,e overheads for data-directed

invocation anti global working memory access. If alternative formulations using more
direct recognition (i.e., fewer, larger cycles) could be found for these KSs, then perhaps
HSP versions would be viable. Failing that, the time efficiency penalty for HSP would be

two orders of magnitude or more.

The HSII - HSP time comr n must be normalized. The first avenue for this consists
of separate consideration of idividual difference. A numerical factor for each, plus an
assumption of independence, giv« a single overall conversion factor, although one with
considerable uncertainty. In the analysis of differences that follows, a factor greater than

1 indicates that HSP is at a disadvantage relative to HSII.

(1) Execution rate of_ the underlying machine -- MIPS (million instructions per
second) rates will be used to normalize for this difference. Fuller [19/6] obtained
MIPS measurements on a PDP10 (KA10 processor) and C.mmp for a
price/performance comparison of the two architectures. A figure of .34 MIPS was
obtained for the PÜP10 running both a general program mix and a set of four
benchmark programs. A figure of about .19 MIPS was obtained for a PDP11/20
processor on C.mmp. Fuller estimated a PDP11/40 to be .34 MIPS (at that time
none were yet operational on C.mmp); subsequent experience has shown this
estimate to be about 307, loo high. (Delays through the C.mmp central memory
switch slow the 11/40 down more than expected.) Thus we use a factor of 1.3 for
normalizing execution rate between a KA10 and C.mmp 11/40.

(2) Instruction set of th§. underlying machine — In spite of its being a
minicomputer, the PDP11 has an instruction set which is comparable in power with
the PDPlO's. Data from Fuller [1975] using four benchmark programs totalling

%about 3500 instructions gives a PDP11/PDP10 instruction ratio of .9; i.e., fewer
'instructions were required on the PDP11. Of course, a PDP10 instruction operates
on a larger word size, and in some applications (e.g., numerical processing of large
integers) this could force a much higher ratio. But speech understanding involves
mostly processing of addresses and small integers, so the ratio of .9 shouW hold

true.

(3) Small address problem — The PDP11 has only 32K 16-bit words of address
space compared to 256K 36-bit words on the PDP10. Aside from its drastic effect
on design, coding and debugging, the small PDP11 address space mandates
execution overhead in the form of overlay swapping and extra copying.

HSP gathers statistics on the number of swaps, and the time for a single swap has
been measured, so this effect can be factored out with reasonable certainty. It
should be noted that the overhead within L* to reference an overlay dominates the
Hydra overhead (which amounts to just changing a relocation register). The latter

takes only 200 microseconds,^7 while the total including L* overhead is 1.8 msec.

[16] See the end of Section 4.3.2 for • case in point.

[17] A version »Iso exist» in the wrileable microstore of (he 11/40 C.mmp processor! which teket only 20

microseconds HSP did not use this version.

Page 48 Time Efficiency Chapter 4

However, L* optimization could reduce this total considerably. The total swapping
overhead is 27 sec, or 2.97. of execution time.

The second form of execution overhead is extra copying of structures from an
overlay page to a fixed (non-overlay) page for temporary use, followed by
erasure. There are 3 number of instances of this in HSP, most of them dealing with
WM element field values. Accounting code was added to HSP to obtain the number
of such copy-erase instances, with the result being 7970 in the POM run.
Separate timing of the copy and erase functions yielded a time of 5 to 10 msec for
the pair.18 Thus the copying overhead was 39.9 to 79.7 msec, or 4.4 to 8.77. of
total execution time.

Combining the two types of overhead gives 7.3 to 11.67. of execution time,
corresponding to a conversion factor of 1.08 to 1.13.

(4) Operating system — Both HSII and HSP have very little interaction with their
respective operating systems during the interval over which they are timed, so this
difference can be ignored.

(5) Implementation system (language) -- No good comparative data on SAIL and L*
exist, but if is generally assumed that every level of interpretation in a system
costs around a factor of 10 in execution lime. Experience with LISP compilers
generally supports this. It is known that an L* system containing mostly
interpreted L* code spends half to two-thirds of its time in the L* interpreter.
This fact alone accounts for a factor of 2 to 3. But the difference between SAIL
and L* is broader. For example, L* makes heavier use of (relatively) inefficient list
structures, and L* does virtually all argument-passing and saving of intermediate
results in a central stack while SAIL makes heavier use of machine registers. Since
the SAIL-L* difference is rather uncertain, a range of 5 to 10 will be used for a
conversion factor.

(6) Degree of kernel optimization — The version of HSII used has a highly
optimized kernel, having gone through a large number of iterations since the first
operational version in 1974. A comparison of various primitive Operation timings
between the Fennell and Lesser system (with locking turned off) and the current
HSII show across the board improvements of a factor of 2 to 4. The HSP kernel, on
the other hand is still totally unoptimized. Optimization differences in the speech
knowledge code (as opposed to the kernel) are minor ~ both HSII and HSP POM
are only moderately optimized.

[18] The actual (imes depended on (he type, at follow» (in msec) integer, 2; WME reference, 8, production

reference, 6; list, 50 or more depending on the length. The composite figure of 5 to 10 i« based on an estimate

of the frequencies of the various types copied.

[19] This was intentional. Not only did it keep the implementation effort within bounds, but more importantly It

maintains a realistic ratio of execution time between various system components. E.g., we can rest assured that

synchronization overhead in an optimized HSP would be about (he same percentage as in (ha currant HSP,

because (he critical sections have not been selectively optimized.

Chapter 4 Time Efficiency Page ^9

It should be noted that this kernel optimization category does not include the
possibility of optimizing HSP by compiling L* code into machine code — that
difference is covered by the implementation system category above. Examples of
optimizations that are included are data restructuring and store-compute tradeoffs.

It is difficult to assign a reliable number, but some improvements similar to those
obtained for HSII should also be possible in HSP. Thus a factor of 1 to 3 will be
used to correct for the different degrees of optimization in HSII and HSP.

(7) Speech knowledge -- Rather than try to factor out any difference in speech
knowledge content (a nearly hopeless task), the HSII and HSP configurations used
for comparison were limited to the POM and RPOL knowledge-sources. Since POM
and RPOL were translated faithfully from HSII to HSP, the two configurations can
be treated as identical in knowledge content. The differences that do exist are
insignificant, or else are a reflection of the architectural differences under study.

(S) Complications o[parallelism -- As stated at the start of this chapter, HSP
multiprocessing overhead is small enough to be ignored in the context of this
comparison. What can't be ignored is the complication of the HSP speech
knowledge (reflected in longer run times) due to the possibility of asynchronous
occurrence of constituent subconditions in some condition being monitored. Often
this means that a production must be duplicated: one for each possible change that
can make the production true. With an understanding of the structure of HSP POM
and data obtained from traces of POM runs, it was possible to obtain an estimate of
the execution cost of handling asynchronous satisfaction of subconditions. The
result is based on factoring out particular production evaluations and WM element
creations/deletions which would be unnecessary in a uniprocess system, giving a
factor of 1.05 for equalizing this difference. This factor is much smaller than for
the original H3I1 POM. This is because HSP POM does not really handle the same
degree of asynchrony. For example, it assumes that input is instantaneous, i.e., that
all input segments are in WM at the start of its execution.

Figure 4.3 brings the individual factors together. There are no known significant
dependencies between factors so they may be multiplied to give the total factor of 7 to

42.

[20] The early version! of the HSII POM KS also contained these complications, but most h»ve since been removed

because they reprssent excess jenerality when running en t uniprocessor.

v—:

Page 50 Time Efficiency Chapter 4

difference factor

(1) Execution rate of machine
(2) Inotruction set of machine
(3) Small address problem
(^1) Operating system
(5) Implementation system
(6) Degree of kernel optimization
(7) Speech knowledge
(8) Complications of parallelism

1.3
.3

1.08-1.13
1
5-10
1-3
1
1.05

Total 7-42

Figure 4.3 Factors for normalizing inessential HSP-HSII differences

A second avenue for comparison covers differences {l)-(6) in one leap by comparing
some primitives common to HSII and HSP to obtain an overall conversion factor. Evan
thoußh the two systems have very different higher level orRanizafions, some low level
primitives are similar. 1 For example, both systems read and write elements in a global
working memory, differing only in the frequency and pattern of such accesses. Figure
4.4 shows a list of such low level primitive comparisons. To improve comparability, the
times for creation and writing do not include the monitoring overhead for data-directed
invocation.

HSP HSII
primitive (msec) (msec) factor

Create a global WM element 200 3.1 65
Read a global WM element

. Integer value 19 .06 320
List value 21 .6 35

Write a global WM element
Integer value 18 .15 120
List value 27 2.1 13

Figure 4.4 Timing comparison of HSP and HSII primitives

[21] However, «van ihm low level primitiv«! are affected aomewhat by the architecture!. For example, the odd feet
(seen in Figure 4.4 belcw) that HSP reading and writing of an integer field take about the lame time can be
traced to the fact that reading is done by matching a variable to the value to be read. Thia adda some extra

overhead.

Chapter 4 Time Efficiency Page 51

These prir.^tives yield a reasonable range of factors, with the exception of the large
ones for reading and writing integer-valued fields. The anamoly could be due to those
operations being very highly optimized in HSII. In any event, throwing out the large
factors gives a range of 13 to 65, which compares reasonably well with 5 to 40 for
differences (l)-(6) in Figure 4.3. There is good reason to believe these HSP primitives are
less optimal (difference (6)) than the system as a whole. There is one conspicuous
inefficiency in both reading and writing that accounts for a factor of 2 alo^e, so the factor
of 1 to 3 used for the whole system may be too small for these primitives. Thus, it is not
surprising that the range of 13 to 65 obtained here is somewhat larger than 6 to 40.

The third and final avenue for comparison relies on data from HSC, the C.mmp version
of HSII [Lesser and Suslick, 1977], which is also implemented in L*. Although HSC. never
became fully operational, the Kernel was completed and underwent one optimization pass.
HSC. primitives that correspond closely to primitives in the current HSII system were
timed, and the results are shown in Figure 4.5. The HSC. timings have locking
mechanisms factored out. The resulting HSC/HSII ratios represent a combination of
factors (l)-(6). Since factors U)-(5) are identical for comparisons of HSII with HSP and
MX., removing factor (6) from the HSC/HSII ratios will allow a confirmation of the first
avenue of comparison. It is estimated that further optimization of the HSC. primitives
(exclusive of L* optimization) could reduce times by a factor of .5 to .8, so we use those
values to remove factor (5).

primitive

Create hyp

Read hyp integer

Read hyp list

Write hyp integer

Write hyp list

Create linK

(msec) (msec) ratio ratio x .5-.8

225 3.1 73 37-58
5.7 ,06 . 48-76

13.2 .9 15 7-12
6.S 1.5 4 2- 4

15 2.4 6 3- 5
260 19.1 14 7-11

Figure 4.5 Timing comparison of H5C. and HSII primitivös

Taking the lowest and highest points of the individual ranges gives 2 to 76, while the
range for (l)-(5) in Figure 4.3 is 6 to 13. This is reasonable agreement, if we consider that
the two primitives with abnormally high factors (Create-hyp and Read-hyp-integer) are
more highly optimized in HSII than the others. Excluding those two, the range from Figure

4.5 is 2 to 12.

The results of the three different avenues are consistent enough that we can have a
fair degree of faith in the estimate of 7 to 42. Applying this as a correction to the base
factor of 255 from Figure 4.2 produces the statement that the current HSP architecture is
inherently 6 to 36 times slower than HSII for the POM + RPOL configuration. Projecting to

'5iy«»w*^'''"
*<

Page 52 Time Efficiency Chapter 4

a normal mix of syllable lengtha for PCM input adds perhaps a factor of 2 (i.e., long
syllables are relatively uncommon). And projecting to a more complete KS configuration,
inexact though it is, adds another one to one-and-a-half orders of magnitude on fop of
this, giving roughly two to three-and-a-half orders of magnitude total (i.e., 100 to 3000).

We might justifiably place most of the blame for this large difference onto the
conventional machine architectures we are forced to use to implement PSAs. T're ideal
machine for a PSA would combine extremely high parallelism for ra^t recognition with a
huge memory to accommodate vast numbers of complex productions. However, given the
speculative nature of such a machine, it is best to return to the question of HSP running
on conventional machines. The following chapter does address the possibility of running
HSP on medium-scale multiprocessors (10 to 50 processors).

4.3 Remaining Sources of Inefficiency in HSP

Having uncovered this rather large inherent time inefficiency of HSP, the next
immediate concern is to account for it: first to understand what in the structure of HSP
makes it so much slower than HSII, and then to gauge whether there is any hope for
improvement.

To begin, let us look at the global breakdown of execution time in HSP. Figure 4.6
shows such a breakdown into six categories for the complete POM run.

7. total execution time

Recognition 95
Production Memory indexing 7
Successful condition evaluation 21
Action interpretation 7
Unsuccessful condition evaluation 60

Action 5
Deletion of previous change elements 2
Making current changes 3

Figure 4.6 Global breakdown of HSP execution time

There is nothing terribly surprising about this data. It might perhaps be said that
unsuccessful condition evaluation takes too large a share, but It Is unreasonable to expect
its share to be very small, as if the system were non-deterministic. Besides, redicmg the
607, contribution of unsuccessful condition evaluation by an order of magnitude would give
only an overall factor of 2 speedup.

Chapter ^ Time Efficiency Page 53

Although not apparent from the data above, there are several identifiable sources of
inefficiency in H5P. We turn now to a discussion of them, including where possible ?;'i

estimate of their magnitude.

4.3.1 High Degree of Data-directed Control

It was stated in the previous chapter that HSP uses almost 500 times as much data-
directed control as HSII (by measure of the number o' data-directed invocations). Although

that is a positive aspect in some regards, the overhead of this large number of WM-
mediated control links is very worrisome. The sequencing of control within an HSII KS has
essentially negligible overhead since it amounts to the sequencing of the underlying
machine. When this same KS is represented as productions in HSP, the sequentialily of
control becomes riddled with data-directed invocations. It is not clear that this is an
inevitable result of any PSA. It is possible to imagine much larger productions than in HSP,
with considerably fewer data-directed invocations. But an unmanageable explosion in the

■ P ?
number of productions seems to go hand in hand with making productions larger.

In many cases a data-directed invocation is triggered by some permanent change to
WK/.., jvhich would have occurred whether or not the resulting invocation was desired.
Other cases which cannot be tied to some naturally occurring WM change require a special
temporary WM element (often called a pure control signal) to trisger the invocation,

resulting in extra overhead for the WM element creation and deletion. The overhead for
a single invocation in HSP is about 350 msec for a "natural" one, or 600 msec for a
signalled one. By way of comparison, these times are 20-30 times larger than the basic
HSP WM read time, and are of the same order as the lime to evaluate a production.

In the HSP POM system, virtually all data-directed invocations could be eliminated by
making each production, based on the nature of the WM changes in its action, directly
invoke the set of product: -.is that respond to those changes. Sufficient information to do
this exists at production compilation time; in tact, it is the same information that is compiled
into the PM index (and then used interpretively at run time). This would produce a system
that uses local control exclusively, yet still uses the global WM as in the current HSP. Of
course openness and 'lexibility would be destroyed (which is why we did not actually do
it), but the fact that removal of data-directed invocations is possible makes it proper to
view them as. overhead.

The overhead consists of all the PM indexing time, change element creation and

[22] Since internal disjunctions are not permitted in HSP, alternative subconditions cause • multiplieativ»' Increase in
the number of productions Permitting disjunctions would solve this but lose most of the perelleli^m, besides

being aesthetically unpleasant.

[23] This is a tricky point. Presumably such a 'permanent" change is needed in the context of some future

compulation or by some other KS

[24] A pure control signal can also be a iiew fiuld added to an existing WM element rather than a whole new

element Such cases were negligible in the POM run

Page 54 . Time Efficiency Chapter 4

deletion, plus the time to create and delete pc* control signals in WM. Another less
obvious overhead is the initial portion of condition t~ iuation for each production which is
merely reobtaining the context established by the preceeding production {i.e., reading from
WM into local variablesV A direct invocation scheme could pass the context as parameters
to the following production, with much lower costs. The cost of this in HSP is hard to
estimate accurately, but we expect that on average about 20-407. of condition evaluation
costs are for reobtaining context. Figure 4.7 shows estimated costs of data-directed
control in the HSP POM run as a percentage of total execution time. The data shows that
we could expect a factor of 1.4 to 1.8 speedup in converting HSP largely to local control.

t total execution time

Creation/deletion of change elements 6
Creation/deletion of control signals 2
PM indexing (changes => productions) 7
Condition evaluation to reobtain context 15-30

Total 30-45

Figure 4.7 Overhead for data-directed invocation in the HSP POM run

Curiously, overhead for data-directed invocation in HSII is not smaller in proportion to
the 500 times fewer invocations: it amounts to about 97. in the HSII POM run. This is
because the overhead is dominated by the monitoring of Blackboard changes (of which
there were about 200/, not by the actuil invocations.

4.3.2 Limited Local Working Memory

Given that an HSP KS must use global WM for many functions that a corresponding HSII
KS would perform in local memory, it is of interest to ask what this costs HSP in time
efficiency. The obvious extra costs of limited local working memory in HSP are due to the
relative slowness o* reads, writes, creations, and deletions of WM elements that
correspond to local operations in HSII. Figure 4.8, which shows numbers of global
working memory operations In the corresponding POM runs, gives an idea of the scope of
these extra costs.

[25] The control signals are often also used for "passing parameters' to the subsequent production, but we assume
that a scheme for direct (as opposed to data-directed) invocation could pass parameters with negligible

overhead.

[26] Cases of subroutine control are included in this analysis since they are accomplished in HSP by two separata

data-directed invocations ("call" and "return").

Chapter 4 Time Efficiency Page 55

HSU HSP

Reads

Writes

Creates

Deletes

2160
270

50
0

12100
210
110

60

Figure 4.8 Total of global working memory operations in the HSII and HSP pOM runs

This data serves only crudely for this purpose because there are a number of other
possible reasons for differences in these counts. For example, some of the extra HSP
reads are due to redundant condition evaluation (see Section 4.3.5). And we would
expect HSP to have more writes than HSII, but since the opposite is true there must be

"5 7
another factor at work here also. However, we do see more creations/deletions and
many more reads in HSP, and the bulk of this must be due to HSP's limited local working

memory.

Figure 4.9 gives estimated time factors for global versus local working memory
operations in HSP. The local operations are of course hypothetical, and are based on times
for simple analogous operations in HSP's implementation language. Creation is
problematical since it is not clear what the local correspondent should be; what we use is
the time to create and initialize a small (about 5 element) vector. The values for creation,
writing and deletion, unlii.^ those in Figure 4.4, include the pa,t of their cost related to
data-dtrected invocation: the time to create and delete a change element (about 100 and
50 msec, respectively), plus the time to index into the PM index with the change (100 msec
for the POM 4 RPOL configuration).28

[27] One further not» Ihe fact thai the number of crealt« minus deletes is exactly the same for both systems is

largely coincidental.

[28] One possibility for reducing these costs is a feature for marking some WM elements as unmonitored so that
changes to them will not be responded to HSII does have this feature, even though it is needed less there

(because data that does not need to be monitored will usually be stored locally rather than in the HSII

Blackboard).

Page 56 Time Effirancy Chapter 4

global local
(msec) (msec) factor

Create 400 4 100
Read 20 .5 50
Write 300 .5 600
Delete 260 2 100

Tigure 4.9 Rough factors for global vs. local working memory operations in HSP

If we combine data from Figures 4.8 and 4.9, we obtain percentages of total execution
time for each of the WM operations, as shown below in Figure 4.10. Assuming for the
moment that most of these operations could be replaced by corresponding local
operations, 9 their contribution to total time would essentially vanish because of the large
factors in Figure 4.9.

time » in POM total time
(msec) run (sec) 7. time

Create 400 110 44 5
Read 20 12100 242 26
Write 300 210 63 7
Delete 260 60 15 2

Total 365 40

Figure 4.10 Time contribution of HSP WM operations in the POM run

However, it makes no sense to convert from global to local working memory use
without also converting to local control, since data-directed (global) conlrol is built upon
the global working memory, "luus we must consider the effect of going from global to local
working memory use in an HSP system which has already converted to local control (as
discussed in the previous section). This is more difficult to estimate. The global create,
write and delete would be less expensive than above because of no monitoring for data-
directed invocation. There would be no deletes and fewer creates because no control
signals are necessai y. There would be an estimated 25% fewer reads because of no
condition evaluation to reobtain context. And the total time would be reduced by 30-45%
from 91/ sec to about 570 sec. Figure 4.11 shows 40% as the resulting estimate of

[29] Some few would have to remain to provide inttr-KS communicalion.

Chapter 4 Time Efficiency Page 57

percentage of total time for WM operations in this hypothetical system. Thus we can
expect a speedup factor of 1.7 in converting an HSP system which already uses local

control from global to local working memory use.

time » in POM total time
(msec) run (sec) 7- time

Create 300 50 15 3

Read 20 9000 180 30

Write 200 210 ■■;() 7

Delete

Total

160 0 0

235

0

40

Figure 4.1 1 Time contribution of local-control-HSP WM operations in the POM run

There is another less obvious cost of HSP's limited local working memory. Some WM
changes that correspond to local HSII operations cause extra productions to be evaluated
when they are obviously (to the observer, not the system) irrelevant. The exact size of
this cost is unknown, but it is probably well below 107. of total execution time.

An interesting piece of HSII history indicates the efficiencies oossible through HSIFs
use of local control end working memory. The first versions of the SASS KS used the
Blackboard to store all intermediate grammatical structures, and were found to be
unbearably slow. A reimplementation of SASS using local data^structures rather than the
Blackboard was able to do much more processing and yet run significantly faster [Hayes-
Roth, Mostow and Fox, 1977]. It has been estimated that this new SASS runs tv/o orders of
magnitude faster than the original Blackboard-based version [Lesser and Erman, 1977].
The new SASS has three main activities: creation of nodes representing partial phrase
hypotheses, searching for already-existing nodes satisfying certain properties, and
selecting a next node to process. Figure 4.12 compares how long these operations take
in the actual SASS (using local structures) with an estimate of how long they would take if

SASS used t.".=> Blackboard.30 Creation in the local version maps into creation of one hyp
and a couple of links in the hypothetical Blackboard version, local reading into an
associative retrieval from the Blackboard, and local control sequencing into a data-directed

invocation.

[30] This is not «^»clly the »am« a« comparin| th« new and old vergions of SASS, though th» old version do»i us«

the Blaekt. „o.

— "Vl^-g

Page 58 Time Efficiency Chapter 4

global local
(msec) (msec) factor

Creation 40 .1 400
Searching 100 .3 300
Control seque ncing 100 .03 3000

Figure 4.12 Factors for global vs. local operations in the HSII SASS KS

These factors are so large that it is not difficult to see how an overall factor of two
orders of magnitude or more could arise It is not known exactly what proportion of
SASS's total execution time is covered by the above three activities, but it is certainly
substantial. And, for example, if the proportion were 507. for the three activities together,
an overall factor of well over two orders of magnitude could easily result.

4.3.3 No Declarative Long-twrm Knowledge

As discussed in the previous chapter, the absence of a declarative long-term memory
in HSP leads to a number of awkward procedural representations, bince these usually
involve large sets of mutually-exclusive productions which all respond to a very similar
WM stimulus, there is potenti,! for a large amount of unsuccessful production evaluation.
Thus there is a marked effect on time efficiency as well as space efficiency.

The time efficiency of these large mutually-exclusive production sets is very
dependent on the PM indexing mechanism. Indexing is sufficient in most cases to select the
single production to evaluate, essentially nullifying any time efficiency loss. There are a
few exceptions, the most notable being the POM state transition probability productions,
where indexing narrows the number of productions to evaluate from 589 down to about 5
or 10. In any case, absence of the PM indexing mechanism would have disastrous
consequences for the time efficiency of these large production sets.

Details of the POM run were analyzed to estimate the time cost of the lack of
declarative long-larm memory. In the cases where PM indexing was sufficient to select a
single production, no time penalty was assigned, since that selection is about as efficient
as a true declarative memory structure would allow. In the remaining cases, the cost of
all extra unsuccessful production evaluations (and in the case of the state transition
probabilities, extra WM element creations and deletions) was tallied. The result is that lb7.
of the total execution time is inefficiency introduced by trie lack of a declarative long-term
memory facility.

[31] Note that the PM indexing mechanism ii being used in I peculiar way at a declarative memory structure But

since it is purely an efficiency mechanism and ii (ranspar*,-;! lo the /epresentation, the claim of no declaratlv«

long-term knowledge has not been violated.

•
Chapter 4 Time Efficiency Page 59

4.3.4 Working Memory Searching

As discussed earlier, the existing HSP mechanisms of explicit WM element references
and WM indexing drastically reduce the «.mount of WM searching. But the prospect of
large increases in WM size that come with more KSs and longer portions of input
utterances indicates that WM searching is still a problem. As noted earlier, 100-fold

increases in WM size are quite possible.

It was not convenient to directly measure in HSP the fraction of time spent searching
WM, but it is possible to get an estirrv j from other data taken from the PCM run. There
were a total of 1803 matches of condition elements to WM elements which failed;
subtracting the number of productions which failed (since there must be exactly one match
failure per producticn failure, exclusive of WM searching) gives 219 negative matches as
the cost of WM searching. Since matching is the dominant cost of condition evaluation, and
assuming all matches cost about the same, the ratio of 219 to the total number of matches,
5691, gives the cost of condition evaluation due to WM searching as 3.87. of 81A, or only
about 37, of total execution time.

It is possible to gat a rough estimate of how WM searching costs will increase with
larger system configurations. The addition of rew KSs and accompanying Blackboard levels
(as represented in the HSP WM) will probably not increase the proportion of WM searching
time, because new indexing structure will be also added to the WM index for the new
levels, with searching normally necessary only within a single level. However, since there
is no indexing of WM by time interval, an increase of 10 to 20 in utterance length will
increase the time for most searches by a similar factor (this in addition to a 10 to 20-fold
increase in the number of productions evaluated, and hence the number of searches). Thus,
as shown in Figure 4.13 below, we can expect WM searching to increase from an
insignificant 37. of total time to a considerable 307.. (This assumes a factor of 15 Increase

in utterance length).

'

Page 60 Time Efficiency Chapter 4

1 total execution time

Current HSP POM run
PM indexing 7
Condition 81

Searching 3
Remainder 78

Action interpretation 7
Action 5

Projected HSP run with Urger configuration
PM indexing 5
Condition 87

Searching 32
Remainder 55

Action interpretation 5
Action 4

Figure 4.13 Proportionate cost of HSP WM searching

Searching in HSII is done both by kernel functions {e.g., finding a hyp to match given
characteristic«;, or finding hyps adjacent in utterance-time to a given one), and by the KS
code itself (e. ,., using a FOREACH set iteration statement). It is not feasible to measure the
contribution of the latter, but in the HSII POM run there were 14 retrieval calls, amounting
to 37 of total execution time.

4.3.5 Redundant Condition Evaluation

In a paper describing the efficiency mechanisms of the OPS system, Forgy [1977]
identifies two aspects of redundant condition evaluation. The first, structural redundancy,
arises from the fact that some condition elements appear in many different productions,
and thus may be re-evaluated every time they are encountered. The second, temporal
redundancy, is caused by condition elements being . atched against the same WM elements
cycle after cycle even though the WM elements have not changed. These two types of
redundancy are exacily those addressed by the first two sources of knowledge used in
PSG filters (as cited above in Section 4.1.1).

The HS? PM index already serves to reduce structural redundancy, and the WM index
re-iuces temporal redundancy. Furthermore, HSP's explicit WM element references reduce
WM searching' to such a low level that evaluating a redundant condition element is usually
not very costly. Thus, there is not a large factor still to be gained in HSP through
redundancy elimination. An additional factor of 2 or perhaps 3 is all we should hope for.

There are local cases where the redundancies are still worrisome. But often in these
cases there are other remedies, such as the following two examples which use
intermediate storage in WM.

iV^W1***

Chapter 4 Time Effi ^ r, Page 61

In POM, the state transition prob?bility productions require five piec s of context
for their operation. A straightforward implementation of these productions requires
an initial six condition elements to gather the context, and since many of these
productions must be evaluated for every relevant change (though only one is true)

there is a significant amount of structural redundancy. A savings was realized by
restructuring the productions to first gather the context and create a WM element
to hold it, then on the following cycle react to the ne ■:<, WM element to re-obtain
the context and produce the result. The fact that ihe context has been packaged
into a single WM element allows the PM index to discriminate on the context
information to eliminate most of the false productions.

For linking up the context of segments around a syllable nucleus segment there are
two sets of productions, due to the complications of parallelism as discussed in
Saction 4.2. They can be schematized as follows;

Pa : (chga ABCDEFG-> ...)

Pb : (chgb EDCBAFG ->...)

where chga and chgb are condition elements which test for a change which makes,

respectively, condition elements A and E true. Pb is needed because Pa may fail at

E, but E may later become satisfiable, in which case Pa can no longer fire because

it is conditional on chga, i.e., some change that makes A true. The re-evaluation of

A, B, C, and D that Pb does is a form of temporal redundancy. If we know that A B

C D will not in the meantime become falsp, we may add Pa' and redefine Pb as
follows:

Pa' I (chga A B C D NOT E -> X)

Pb : (chgb E X F G -> ... <DEL X>)

This avoids the redundancy. The purpose of A is to store in WM the fact that A B

C 0 is true.

Summary

A factor of 6 to 36 is the inherent speed advantage of HSII over HSP for the POM run.
The several sources of inefficiency discussed above contribute toward this factor as
shown in Figure A.M. Factors (1) and (2) are independent since (2) was estimated in a
hypothetical system wir' had (1) already applied. (3) and (4) are not independent of (1)
and (2), but their effe^' . are small enough that the dependence makes little difference to
the combined factor. (5) has a large overlap with (2), so the estimate for (5) has been
reduced somewhat, but it Is just a rough guess anyway.

[32] This is Irua »ven though nona of th« six condition •lament* requires sairchin(.

1*1

Page 62 Time Efficiency Chapter 4

source factor

(!) Data-directed control 1,7
(2) Limited working memory 1,7
(3) No declarative long-term knowledge 1,2
(4) WM searching 1,03
(5) Redundant condition evaluation 2

Total 7

Figure 4.14 Sources of HSP inefficiency with factors of slowdown

The combined factor of 7 reaches the lower bound of the 6 to 36 range we are
attempting to account for. Without coming closer to the middle of that range, there is some
reasonable doubt that all the major sources of inefficiency have been captured. There are
indeed several known sources not discussed here, mostly connected with the limited
capabilities of the HSP production language. For example, the inability of a single
production to deal with data lists of arbitrary length is known to have a significant'effect
in the POM and RPOL KSs. Perhaps such additional sources have a larger effect than
anticipated.

A section on time efficiency in Chapter 7 summarizes the major assertions of this
chapter.

V.;

Chapter 5 Parallelism Page 63

Chapter 5

Parallelism

The task of understanding speech in real time requires a great deal of computing
power, and trends in computer technology make multiprocessor machines such as C.mmp
[Wulf and Boll, 1972] and CM* [Swan, Fuller and Siewiorek, 1977] an attractive solution.
But parallel machines such as these can be effective only if first there is enough
parallelism inherent in the task, and secondly the system architecture can exploit it.
Lesser [1974] recognized the great importance of parallelism for speech understanding,

and provided a survey of design issues for appropriate system architectures.

In 1974 Fennell and Leiser built a multiprocessor simulation within the HSII system
(itself running on a uniprocessor PDP-10) to determine the degree of parallelism, and to
study interference in Blackboard access [Fennell and Lesser, 1977], [Fennell, 1975]. Even
though it was not possible to match in HSP the knowledge source (KS) configuration they
used (most of those KSs were phased out of HSII by 1976), their data provides a useful

comparison point for HSP in the analysis that follows.

This chapter examines the way in which HSP exploits parallelism in the speech task,
and compares HSP with the parallel (Fennell and Lesser) version of HSII. It uses data from
multiprocessor runs of HSP on C.mmp and from an HSP simulator which can simulate even
larger numbers of processors. The first section describes where potential parallelism
exists in the speech task, and compares HSII and HSP in the way they exploit this
potential. The next two sections describe the general methodology that was necessary to
obtain HSP timings on C.mmp, and the HSP simulator. Next come two sections presenting
the results on HSP parallelism and comparison with HSII: one on the overhead for
exploiting parallelism, one on the degree of parallelism and limits to greater parallelism.
The final section on hardware memory interference is a side excursion into an interesting

problem which HSP experienced on C.mmp.

5.1 The Sources of Parallelism

There are -e^ ral -„urces of parallelism in the HSII architecture, corresponding to the

three-dimension \ structure of the HSII Blackboard:

(1) Different information levels — The speech KSs that operate at the different
Blackboard levels can in some cases be executed in parallel. It might be expected
that the parallelism is as large as the number of KSs. But this is actually quite
unlikely, since KSs tend to be directly dependent on the results of others operating
at nearby levels. For example, a totally bottom-up system would have no such

■i^sc*

Page 64 FaraMelism Chapter 5

parallelism, while a pure combination bottom-up and top-down system would have
a potential parallelism of this kind of only two.

(2) Different intervals of Ure utterance-time -- Information units in the Blackboard
span intervals of utterance time, and units that are non-overlapping can often be
processed in parallel. The lowest level of the Blackboard (segmental) has the
smallest units and hence the most parallelism of this type; the highest level
(phrasal) has very little since each unit spans much of the utterance.

(3) Alternative hypotheses -- The errorful nature of speech knowledge requires
that many alternatives be maintained in the Blackboard for a given time within a
given level. This creates a combinatorial searching pi iblem, but the processing of
these alternatives can be done in parallel. The higher levels of the Blackboard
contain more alternatives than lower levels due to combinatorial propagation of
uncertainty.

The HSP architecture exploits these same three sources, but introduces an additional
source;

(4) Intra-KS parallelism -- KSs, which are single units in HSU, have in HSP a fine
structure with productions as units. For example, the HSP POM KS has 906
productions, resulting in some intra-KS parallelism which is not exploited in HSII.
The parallelism is not nearly on the order of the number of productions. But it is

larger than the number of true parallel intra-KS activitiesp it includes a large dose
of parallel evaluation of conditions which turn out to be false.

Neither HSII nor HSP fully exploit these various sources of parallelism. For example, in
HSP it is possible that a production may find multiple matches for one or more of its
condition elements, 3nd in this case the alternatives are processed sequentially by the

single production instantiation.3 In HSII, a single KS instantiation can similarly process a
number of alternatives sequentially. O.ten this takes the form of retrieving a set of
Blackboard elements according to some criteria, and then processing them sequentially.

[1] Furlharmor«, (he totally dat>-direcled nature of control in HSP allows (hit »xtr» parallelism to be had almost

"for free". No explicit operations such a« FORKs and JOINi are required. Control within the HSII KSs it not

data-directed, so that exploiting this same parallelism there would be more difficult.

[2] An example of this in POM is the parallel recognition of the left and right halves of a syllabi«.

[3] It would be possible, though difficult, to modify the HSP architecture to process these multiple instantiations in

parallel. However, these case» of multiple firings of a single production may be infrequent. There were none in

the POM run. But some could be expected with a richer KS set and larger portion of input utterance.

Chapter 5 Parallelism Page 65

Parallelism in the HSU Conlrol Cycle

In HSIl, the determination of which Preconditions (PREs) should be invoked in response
to 3 Blackboard change is done as a subroutine (if the kernel function that actually makes
the change. This is based on a static specification for each PRE in the system of which
fields of hyps or links, and in which Blackboard level, the PRE is monitoring. As a result of
a Blackboard change, the PREs that are interested in that change are invoked in parallel.
Each PRE instantiation may in turn invoke KS instantiations in parallel, but each of these
will run to completion without further splitting. The cycle is completed when the KSs
themselves make changes to the Blackboard that trigger other PREs. Note that the PRE
and KS invocations occur in a totally asynchronous manner.

Parallelism in the HSP Conlrol Cycle

The HSP control cycle differs from that of HSII in several important ways. The
asynchronous aspect of invocation is replaced by a global synchronization imposed by the
PS cycle. Changes to WM are not made during the firing of a production, but are queued
and then made at the end of the cycle. And there is no duality analogous to HSII's PRE
and KS; a production cannot directly invoke another, but can only make WM changes which
may result in the invocation of certain other productions on the following cycle.

A cycle begins with a queue of the changes fnat were mfde to WM in the previous
cycle (the change queue), an empty queue of productions to be evaluated (the production
queue), and a single active processor. The active processor immediately signals all others,
and all processors begin the recognition phase. Each processor enters a loop in which it
repeatedly evaluates a production from the production queue, or if none exists then
processes a change from the change queue.5 Processing a change consists merely of
indexing into PM and putting onto the production queue (for subsequent evaluation) all the

productions so obtained.

Whenever a production evaluation succeeds (the condition of the production is True),
its action is interpreted to obtain symbolic representations of the changes, which are
accumulated in a temporary memory. (The changes are not actually made at this time, thus
the use of the term "interpretation").

Each processor passivates itself as soon as it finds both queues to be empty; except
for the last processor to finish, which enters the action (or change execution) phase. In
this sequential stage the single processor first erases the change elements created during
the previous cycle. It then makes all the accumulated WM changes of the current cycle,

[4] These linkages can be very explicit, with Ihe WM chani» being nolhinj more «ban an invocation signal for
another specific production The point is that the signalling is still done in a data-directed manner through the

WM.

[5] Note that change processing and production evaluation are inlermixed. This is done to prevent the production

qurjue from growing too large It makes no difference to Ihe results.

■•.«.--

Page 66 Parallelism Chapter 5

and puts the change elements representing these changes into the change queue in
preparation for the following cycle.

Since it is possible that one or more processors may passivate themselves while
another is still processing the last change (which may produce additional productions to
evaluate), there must be a provision for reactivation of processors when that last change
results in new production queue entries. Thus, with every insertion into the production
queue a check, is made to see if any processors are idle, and if one is found it is signalled
to start again.

There are mutual exclusion semaphores to protect access to the production and change
queues, the list of accumulated changes, and the count of passivafed processors. The latter
is used to detect the end of the recognition phase, and also in the above-mentioned
reactivation check.

Synchronization of available space lists in shared memory is also necessary. The
representations of the changes obtained by interpreting actions must go into the change
queue to drive the next cycle, and therefore oust be created in shared memory so that
they are accessible by any of the processors. In addition, new WM elements are created
during action interpretation, and they must of course also be in shared memory. Thus
action interpretation is protected by a mutual exclusion semaphore.

5.2 Timing Methodology

There were a number of difficulties pre-3nted by C.mmp/Hydra for obtaining accurate,
consistent timings. It was possible to control many of them by various means, but a few
were insurmountable. The net result is that timings are accurate only to 5 or 107.. Much
of the special methodology for controlling timing runs is interesting because it reveals in
an oblique way some important aspects of the C.mmp/Hydra architecture. A partial listing
follows:

Two different types of primary memory are in use on C.mmp. About 407. of the
total is semiconductor memory, and core memory makes up the remainder. In the
abst ice of memory contention the core memory seems to be roughly 107. faster,
but as contention increases the core degrades more quickly. Thus no single
correction factor would suffice. It was hoped that HSP could be run with oniy core
memory, but it turned out to be insufficient. Even with only one-fourth of the
semiconductor memory removed from the system there was occasional paging. Also,
fewer ports aggravated the memory interference problem (see Section 5.6). It
was possible to largely correct for the different memories by normalizing times for
each run so that action times are equal (required by the architectural feature of
sequential action execution). The 4 process run required a 107, correction, and the
7 and 10 process runs required about 5X.

The timing facility provided by Hydra does not C'iliver pure user e/ecution time; it

v.—-

Chapter 5 Parallelism Page 57

includes overheads such as scheduling, paging, and interrupt service for I/O
devices. However, these overheads were eliminated or minimized by various means:
running alone on the system, running with enough primary memory to eliminate
paging, locking HSP processes to disjoint processors, locking the processes into
core to ensure that they are not paged out, giving HSP processes the equivalent of
an infinite time slice to eliminate scheduling overheou, and avoiding whenever
possible the use of processors having high speed I/O davices.

The five 11/20 processors each run at .55 times the speed of an 11/40 on C.mmp.
This difference could not be factored out satisfactorily for multiprocessor runs, so
only 11/405 were used. Even 11/40 processors run at slightly different speeds;
however, these differences are small, typically less than 17,.

The total HSP system is quite large, and under normal circumstances (i.e., with
other users on C.mmp) it is unwise to require that all of it reside in core at once,
so some of the pages are swapped in and out of the core page set (CPS) as
needed. But to eliminate this overhead for timing runs, all needed pages are
permanently loaded into the CPS.

The timing vers on of HSP uses busy-wait synchronization for all critical sections
and process signalling. Synchronization mechanisms provided by Hydra have

unacceptable overheads, especially for large numbers of processes.

Small differences can be magnified due to a reordering of close events, resulting
for example in a different pattern of critical section interference.

5.3 The HSP Simulator

Since parallelism in HSP was anticipated to be higher than that attainable on C.mmp
(with a maximiiin of 15 processors), a simulation subsystem was built within HSP to explore

the consequences of a very large number of processors; i.e., 50 to 100.' The system can
collect timing data from a uniprocessor HSP run on C.mmp, and then use that data to
simulate runs with any number of processors.

The 1 msec grain of the simulation is detailed enough to include the short critical

[6J Hydra policy Bysiem (version 0) semaphoro« (the standard user-level synchronization mechanism), when as*d

to signal a set of processes, take 90 msec for the first and 50 additional for each succeeding process. (Tnn

w„g improved in version 1 of the Policy Module, which allows a concurrency of three for such signalling.)

[7] This number of processors is on the order of that eventually planned for the CM* multiprocessor being built at

CMU [Swan, Fuller and Siewip ek, 1977], ao the simulations should be relevant to running HSP on CM« In ihm

future.

V***"

Page 68 Parallelism Chapter 5

sections involved in accessing the change queue and production queue, and to account for
quiescence of the multiple processorr at the end of a cycle. It does not include the effect
of hardware memory interference -- this phenomenon will be discussed in Section 5.6.
Real runs on C.mmp with up to 10 processors showed almost negligible interference due to
the critical sections for queue accessing (see Figure 5.10). But the simulation of these
critical sections was included in case interference would become significant with a very
large number of processors (it didn't^

The simulator was validated by comparison with a series of mulfi^rocessor runs on
C.mmp. Two selected PS cycles from the total of 21 in the POM run were used: a medium
one (15), and large one (9). These were chosen because Cycle 9 typically had the highest

parallelism, and 15 was intermediate between 9 and the cycle with lowest parallelism.
Their characteristics are shown in Figure 5.1.

Cycle 15 Cycle 9
medium large

16 36
110 300

18 42
18 42
47.5 99.3

« changes responded to

« productions evaluated

« productions fired

* new changes

uniprocessor time (sec)

Figure 5.1 Characteristics of the POM cycles used for validation

The results were compared on the basis of elapsed time, idle time, and the total
blocked time attributable to each critical section. (These various sources of lost time are
explained more fully in Section 5.5). Figure 5.2 shows the results obtained.

[8] Though only barely no. See difficulty (4) later in this section.

[9] Runs of more cycles were deemed unnecessary because cycle size alone is such a major determinant of

parallelism. .

',

Chapter 5
Parallelism Pa*e 69

caieROry Cycle 15
n of processors

Elapsed time
1
2

7
10

IdK during recognition

1
2
4
7
10

Real Sim_

47.5 48.3
24.9 25.4
13.4 14.1
9.3 9.2
7.4 7.7

0 0
.12 .26
.35 1.30

2.97 2.85
2.90 7.99

Blocked on action interpretation
1 0 0
2 0 .14
4 .05 .46
7 .34 1.01
10 1.77 1.69

Blocked on 'hange queue
j 0 0
2 0 .001
4 .001 .01
7 .01 0

10 .02 0

Blocked on production queue
1 0 0
2 .002 0
4 .01 0
7 .02 .03
10 .03 .06

Cycle S 1
Real Sim

99.3 99.1
50.7 52.5
26.2 26.2
15.4 15.8
12.3 11.7

0 0
.16 .01
.58 .71
,37 .88

1.25 2.30

0 0
.13 .11
.36 .29
.98 .81

1.70 .86

0 0
0 0

.001 0

.01 0

.02 0

0 0
.01 .002
.02 .02
.03 .04
.05 .10

Figure 5.2 Validation of the HSP simulator (times in seconds)

■■z.s*W*

Page 70 Parallelism Chapter 5

There are several reasons why exact agreement should not be expected:

(1) All the difficulties with consistent timings discussed above affect the agreement
since the simulator works from one set of timings and its output is compared with a
different set.

(2) The simulator doesn't include a small amount of overhead in the real system for
accounting facility hooks. (Those overhe?ds exist even though the accounting
facilities are turned off during timing runs).

(3) The simulator does not model hardware memory interference. In spite of
special efforts to eliminate interference in the real runs, it was not possible to do
so entirely.

(4) The "jueue accessing critical sections are too short to be accurately
repressmed given the 1 msec grain size of the simulator. Also, the length of a
critical section for removing from a queue varies depending on whether or not the
queue is err city, but the simulator treats if as constant. The simulator uses 1 msec
for all queue-accessing critical sections, while the actual values range from A to
1.4 msec.

Taking into a< count the reasons for expecting discrepancies, the agreement is quite
good. Total times are typically 1 to 52 high for for the real run, probably due to (2). Thp
idle and blocked times are not so close as the total times, but that is not surprising in light
of (4). Thus the simulator cannot be used as an accurate predictor of idle and blocked time.

The principal use of the simulator for the results of this thesis was in estimating
parallelism with more processors than exist on C.mmp (see Section 5.5). Another
possible use was in estimating parallelism with larger cycles, as would be expected with
more KSs or longer speech input. This turned out to bt: infeasible since the simulator runs
too slowly to e:;'>iulate large numbers of processors, even with the relatively small cycles
of the POM run For example, Cycle 9 (the largest) can barely be simulated for 50
processors. But since it gets a full 607. utilization during the recognition phase, cycles
much larger than Cycle 9 can be expected to saturate 50 processors (i.e., get close to
1007. utilization during recognition). Thus with large cycles more processors than 50 must
be simulated to probe the limits of parallelism.

Chapter 5 Parallelism Page 71

5.4 Multiprocessing Overhead

Any software architecture that aims to exploit parallelism in some task domain must
supply mechanisms for multiprocessing: process creation, scheduling, intercommunication,
and synchronization. But architectures may differ in the amount of overhead required by
these mechanisms. Indeed, as we shall see below, HSII and HSP are strongly distinguished
by the amount of multiprocessing overhead they contain.

In the HSII architecture there is a necessity for Blackboard lockinR mechanisms to
maintain data integrity when KS instantiations can simultaneously access the same region
of the Blackboard; i.e., the same utterance-time interval at a particular level. This
produces a strong tradeoff between KS execution interference in the Blackboard (high
with simple locking mechanisms) and locking overhead (high with sophisticated locking
mechanisms designed to reduce interference). The locking structure used in the Fennel!
and Lesser system has a dual aspect: whole regions can be locked, or individual
hypotheses and links. The two aspects are coordinated; e.g., locking a time region
effectively locks all hyps and links whose specified time interval overlaps the region. The
region lock involves less overhead than the individual lock, but produces more execution
interference since more hyps and links are affected. A figure of 277. overhead for
Blackboard synchronization, largely independent of the number of processors, is quoted by

Fennell and Lesser.^

In contrast to HSII, HSP has no locking mechanism in the global working memory. This
is possible because of three properties of HSP, ?ll of which are true of PSs in general:

Explicit separation q£ read activity from write activity in the knowledge
representation. Productions are all separated into condition and action; condition
evaluation is a working memory read-only process, action execution is write-only.

Global synchronization of the recognize-act cycle. Since there is one central
recognize-act cycle for the entire set of productions in the system, and since all
active Knowledge in the system is encoded as productions, it is guaranteed that
reading of working memory will never occur simultaneously with writing.

HiRh recognize-act ratio.^ This allows actions to be executed sequentially in HSP
without a severe loss of parallelism (although it becomes severe with very large
numbers of processors: see Section 5.5). And sequential action execution
means no synchronization is necessary to prevent simultaneous modification actions
from destroying a working memory structure.

[10] This overhead figure does not include the lot» lime when • proceseor m blocked due lo . Bleckboard lock. loa\

lime ie analyzed in Section 5.5.

[11] Nole lhal whal we have called action "inlerprelalion" Is here Included under the "reeognire" perl. The "eci"

pari is jusl Ihe change execution phase, whore WM changes are actually made.

'ir-rK***

Page 72 Parallelism Chapter 5

The synchronization that is necessary in HSP (for change and production queues,
action interpretation, and action execution) is ail accomplished with low-level semaphore

operations having negligible overhead. However, each :all on a semaphore operation
does lake a couple of L* interpretation cycles, at a cost of about .15 msec per cycle. In
POM cycle 2, for example, this amounted to only 0.67. of the total execution time. And this
overhead could be almost completely eliminated by simply compiling the L* code into
machine code.

This apparently large advantage for HSP in locking overhead must be qualified. HSII
provides a more complete locking facility than does H3P, In that locks can extend over
longer intervals of KS activity. (The effect of locking in HSP extends only over a single PS
cycle). For example, in HSP a production may fire as a direct result ol other productions
h.wing fired during earlier cycles, and if may take action based on an implicit condition
{established by the earlier productions) that has since been invalidated. HSII does not
completely rulve this problem, but it does do better than HSP in so far as its larger
knowle^pc units permit locking over longer time intervals.

However, HSII's more complete locking facility may be unnecessary. Lesser and
Fennell [1977] feel that the basic self-correcting nature of HSII may allow it to tolerate a
moderate amount of synchronization errors (i.e., actions based on partially invalid data), in
the same way that it tolerates errors in input or inaccurate knowledge. If this is the case,
then HSII can use a much simplified locking mechanism (just enough to prev3nt destruction
of Blackboard structures). This would cause HSII's overhead to drop, but probably not as
low as HSP's because HSII does not ha1^ the three properties discussed above. If, on the
other hand, the more complete locking is essential, then HSP must have a more elaborate
locking mechanism, resulting ;n sharply increased overhead.

The HSII architecture needs a local context mechanism to maintain for each KS and PRE
instantiation a local database of relevant changes to the Blackboard. The primitive
Blackboard accessing routines are responsible for maintaining these local contexts based
on a specification by each KS and PRE of what classes of changes it is interested in. Each
PRE has a dynamic context which is continuously receiving records of relevant changes.
Whan a PRE js instantiated, its static context gets a copy of the current dynamic context,
and the dynamic context Is cleared. When a KS Instaniiation is Invoked, Its io-al context
gets a copy of both the static and dynamic contexts of the PRE that invoked it. When a KS
terminates, Its local context must be cleared. All this activity Is classified as system

[12] Remember we are separat! ■ litm. Isti due lo blocking on a semaphore from the overhead involved whether •

block occurs or not The former Is certainly not negligible, and is discussed in Section 5.5.

[13] This is a modest compilation task: the part of Ihe interpreter that would have lo be compiled has only about

130 symbols (in its PL« form),

[14] This would seem to require a fundamental architectural >.nange lo HSP, with explicit locking and unlocking
operations for production actions, and with a delaying of evaluation for productions whose conditions access

currently locked WM elements.

Chapter 5 Parallelism Page 73

overhead, and Fenr.ell and Lesser cite a figure of about 107; but the figure is closer to
Ibt if we include the local context copying costs that they included under process
handling overhead.

Part of the activity included in the local context overhead in HSII should probably not
hi.v'e been counted as such. Namely, the determination of which PREs fo instantiate as a
result of a Blackboard change, which is actually part of the evaluation of the

precondition.1-1 In HSP the production indexing (described in Chapter 4) has the analogous
function of determining which productions to evaluate based on a WM change, and it seems
obvious that this should not be counted as overhead. In HSII, this amounts to about 47. of
overall runtime; thus, deducting it from local context overhead leaves us with 117. as the
true overhead.

The HSP architecture avoids the need for any local context overheads. The global
synchronization of the recogmze-^ct cycle and the absence of any delay between
condition and action remove the requirement for local contexts. Productions in HSP
respond without delay fo single WM changes. Thus, the local context of HSII is replaced in
HSP by a single ceil holding the change being responded to. And the "maintenance" of this
involves negligible overhead.

Another form of overhead in HSII is process handling -- the invocation, creation, and
scheduHng of PRE and KS processes. Fennell ar.-1 Lesser give a figure of 97. overhead, but
a significant portion of this (an estimated 57.) Is local context manipulation associated with
PRE and KS invocation, which we have classified under iocal context overhead instead.

Although the Fennell and Lesser system did simulate the scheduling of ready processes
to processors, inciudinß deschedulins and context swapping due to Blackboard

interference, the associated overhead costs were not singled out.^b It is known, however,
that schedulinß and context swapping costs are minor comoared to the other process

handling costs of creation, invocation, anu cleanup. ' In fact, this is why process handling
overhead percentage does not vary much with different numbers of processors, even
though the number of context swaps does vary from a few to over 900.

There is very little overhead in HSP for process handling. Process creation is d >ne
durinß initiali-zation for an entire run, and thus creation overhead has been ignored in all

the timing data presented.10 Since processes are permanently and individually bound to
processors, there is no overhead in scheduling processes to processors. And since all

[15] Thi« «c<ivi»y has been cilled lh» pf«-pr«tondUion in HSII circlar

[16] Tber» IB dala on lh« number of context swaps, but no notion of how lon| • swap tika«.

[17] Lessor, privat» communication, 1977.

[18] For the record, creation of a new L» process takes about 10 seconds plus 02 seconds for each local page

which must be copied (HSP normally has two). The size of this number effectively prohibits any multlprocessinj

strategy involving dynamic process creation

^i

Page 74 Parallelism Chapter 5

blocking on semaphores is clone via busy-waiting (tight execution loops), thnre is no
deschoduling and context swapping going on.^

Access to the HSP change and production queues can be considered as overheads
analogous to HSII process handling: insertion into the change queue as PRE invocation,
insertion into the production queue as KS invocation, etc. In POM cycle 2, for example, the
total overhead of this kind was calculated to be only abou 17.. And most of it could be
eliminated by compiling the HSP interpreter into machine code.

Figure 5.3 summarizes multiprocessing overheads for the HSII and HSP
architectures. On this basis alone, HSP has a clear advantage: not only is execution
overhead dramatically lower, but the system itself is simpler since it needs much less in
the way of multiprocessing mechanism. However, it must be remembered that HSII is
providing a more complete synchronization facility (which may or may not be necessary),
and that this handicaps HSII in the comparison.

t HSIf 7. HSP

Locking 27 1
Local context 11 0
Process handling 4 1

Total 42 2

Figure 5.3 Summary of multiprocessing overhead

5.5 Degree of Parallelism

Parallelism in HSII

The HSII system jsed by Fennell and Lesser for their multiprocessor simulation was at
an early stage of development and thus did not have a full complement of KSs. In fact,
many of its KSs were eliminated or replaced by the time of the final HSII system of
September 1976. Fennel! and Lessor's basic system had 6 PREs and 8 KSs, all operating at
lower levels of speech knowledge: parametric, segmental, phonetic, surface-phonemic. The
absence of KSs at higher levels (. ,_,., syllabic, »/ord, arJ phrasal) means that their results
underestimate the parallelism possible in a full H3II system. .

[19] Thar« is in fact no Hydra scheduling of HSP processes going on if all; HSP could run r.n a bar* machine wifh no

schedul r, aaeuminj fhere wer« some way to gel it initialized and ilarted.

■■Jij^HWppBff*1

Chapter 5 Parallelism Page 75

Figure 5.4 shows the effective parallelism achieved in a series of HSII simulations
with increasing numbers of processors. In the 16 processor run the number of runnable
processes never exceeded 16, so we can conclude that the maximum effective parallelism
of this configuration is about 4.3. The reason for the slight decrease in effective
paralielism from 8 to 16 processors is rather subtle, and is not important in this context.

« of processors 8 16

7. processor utilization 99 98 95 54 26

Effective parallelism 0.99 1.96 3.80 4,32 4.16

Figure 5.4 Parallelism in the 8 KS, 6 PRE HSII configuration [Fennel! and Lesser, 1977]

To explore the effect on parallelism of additional speech knowledge, Fennell and Lesser

tested a second HSII configuration with a new PRE and KS operating at the phrasal and
word levels of the Blackboard. As shown in Figure 5.5 below, it gave an effective
parallelism with 16 processors of 5.28, up from 4.16. But it should be noted that this new
KS was operating at Blackboard levels disjoint from all the other KSs, and thus there was
no increase in Blackboard interference. In a more typical case a new KS would interfere
with one or more existing ones, causing a diminished gain in parallelism.

Parallelism in the utterance-time dimension is affected strongly by the rate of data
input at the lowest level of the Blackboard (in this case, the unclassified segments of the
utterance). If the system were to truly operate in real time, parallelism in the utterance-
time dimension would be essentially zero since the system would be forced to complete
the processing on each unit of data before the next appeared. However, it is not
unreasonable to assume instead that the entire inpu! is available from the start
(instantaneous input), thus permitting maximal parallelism in the utterance-time dimension.
Fennell and Lesser did two simulation runs of the augmented configuration with 16
processors: one with left-to-right iiput and one with instantaneous input. The effective
parallelism increased from 5.28 to only 5.6 with instantaneous input; the smallness of this
increase is bfecause of Blackboard access interference.

configuration
16 processors
8 KSs, 6 PREs
l-to-r input

16 processors,
9 KFo, 7 PREs
l-to-r input

16 processors
9 KSs, 7 PREs
instantaneous input

7, processor utilization 26 33 35

Effect;ve parallelism 4.16 5,28 5.60

Figure 5.5 Parallelism in three different HSII configurations [Fennell and Lesser, 1977]

Page 76 Parallelism chapter 5

In the HSII simulations two sources of lost parallelism are distinguished: idle time when
a processor has no process assigned and there are no ready processes to run, and lost
.me when a process is suspended and there are no ready processes to take its placed

the processor. This lost time can be considered to be due solely to Blackboard
mterference and as such the term blocked time will be preferred in what follows. Figure
5.6 shows ^ a"d ^cKed time for the various HSII configurations. Note that each
column.adds to 100, except for rounding errors.

speech knowledge g KSs, 6 PREs 9 KSt.. 7 PREs
• ^put form l-fn-r m **■—1—T LISlL l-to-r instantaneous
« processors 1 2 4 8 16 16 To

7. processor utilization
7, idle time
7, blocked time

99 P8 95 54 26 33 35
1 1 2 14 46 36 34
0 0 2 32 28 31 32

Figure 5.6 Lost time in HSII: idle and blocked time [Fenneil and Lesser, 1977]

Fennell and Lesser also made some simulation runs in which the locking mechanism was
simply turned off, effectively eliminating Blackboard interference.^ The configuration they
used was: 9 KSs and 7 PREs, instantaneous input, and 32 processors. The effective
parallelism achieved was 14.72. Compared with the value of 5.28, this shows that
Blackboard interference has a major impact on parallelism.21 This value of 14 72
represents an upper bound for what could be achieved with better locking and scheduling
mechanisms thai reduce interference. Or, as discussed above, it may be possible to simply
do away with locking, in which the case the value of 14.72 would be realized.

Parallelism in HSR

The HSP POM system can be considered comparable to a 2 PRE 2 KS HSII
configuration: one PRE and KS for POM itself, and another pair for RPOL (although RPOL is
small compared to POM). Thus the Fennell and Lesser HSII system had about a factor of 4
more knowledge content, including a mixture of bottom-up and top-down activity, giving it
perhaps 2 to 3 times the potential parallelism along that dimension. The HSP runs were
done with instantaneous input. But since only a single syllable from an utterance was used.
HSP gives away a factor of about 10 to 20 in potential parallelism along the utterance-
time dimension.

[20] This could have resulUd in g.rbi,., buf Ih. ini.r..(in| f.e. i. Ih.< H ...m.d «o m.k. IIHI. diff.r.ne, «o
overall .yE Um bahav.or, Thi. wa. larg.ly Ih. baai, for F.nn.11 and Laaaar'a (1977J ap.cuMion, m.nllon.d
earlier, »ha» Blackboard locking could bs eliminatsd

[21] The difference befween 5.28 and 14.72 i. due lo a combinalion of removin, Ih. inlerf.rence lo.. {.boul 30*),
removmg (he overhead (again, about 30i), plus doubling the number of proceiaon from 16 lo 32.

—

Chapter 5 Parallelism Page 77

HSP POM was run on C.mmp wilh a varying number of processors, and the resulting
data on effective parallelism is shown below in Figure 5.7 for three selected cycles and
for the total run. Of all 21 cycles, Cycle 10 was typically the one with the lowest
parallelism, Cycle 9 the highest, and Cycle 15 was intermediate.

* of processors 1 2 4 7 10

Total time (sec)
Cycle 10
Cycle 15'
Cycle 9

all cycles 917 492 281 199 173

14.9 9.7 7.1 6.8 5.4
47.5 24.9 13.4 9.3 7.4
99.3 50.7 26.2 16.4 12.3

7, processor utilization
Cycle 10 100 77 52 31 28

Cycle 15 100 95 89 73 64

Cycle 9 100 98 95 86 81

all cycles 100 93 82 66 53

Effective parallelism
Cycle 10 1 1.5 2.1 2.2 2.8

Cycle 15 1 1.9 3.5 5.1 6.4

Cycle 9 1 2.0 3.8 6.1 8.1

all cycles 1 1.9 3.3 4.6 5.3

Figure 5.7 Parallelism in the real HSP POM runs

The HSP simulator was then used for runs with up to 50 processors, but onfy for
cycles 15 (intermediate) and 9 (large), with results shown below in Figure 5.8. Note
that the results for 10 processors do not agree exactly with the corresponding real run,
but are within 57., and that is as good as could be expected given the difficulties listed in
Sections 5.2 and 5.3.

» „.i—i»-—^ »^(«1

Page 78 Parallelism Chapter 5

it of processors 1 10 20 30 40 50

Total time (sec)
Cycle 15 48.31 7.65 5.26 4.64 4.64 4.64
Cycle 9 99.09 11.69 6.85 5.56 4.91 4.91

7. processor utilization
Cycle 15 100 63 46 35 26 21

Cycle 9 100 85 73 59 51 40

Effective parallelism
Cycle 15 1 6.3 9.2 10.4 10.4 10.4
Cycle 9 1 8.5 14.5 17.8 20.2 20.2

Figure 5.8 Parallelism in many-processor HSP POM simulations

The results show that even in a configuration with somewhere between 20 and 60
tines less potential parallelism than Fennell and Lessor's HSII, HSP has higher parallelism.
With 7 or 8 processors the parallelism is roughly comparable (around 4 or 5), but in HSII it
oottoms out soon after that, while in HSP it continues to rise an more processors are used.
The HSP simulations show that for a small cycle the parallelism levels off at about 8
between 20 and 30 processors, while with a large cycle it reaches 20 between 30 and 40
processors. z

As in the proceeding section nn overhead, this HSII-HSP comparison must be qualified
because of the fact that HSII loc ^g is more complete. HSII is handicapped with lost time
due to Blackboard access interference and locking overhead. HSP has no comparable
losses since it operates without explicit locking of the WM. If the HSII locking could be
safely removed, HSII parallelism would increase by roughly a factor of 3 (at least for the
configuration used by Fennell and Lesser). If, on the other hand, explicit WM lockinf, had
to be added to HSP, its parallelism would surely fall (how much is unknown). In any event,
we expect that HSP would maintain a significant edge (at least a half order of magnitude)
over HSII in parallelism since HSP exploits intra-KS parallelism as an additional source.

The degree of parallelism in HSP is affected dramatically by the PM indexing
mechanism. If no such mechanism existed, and hence every production in the system had to
be evaluated for every WM change, the parallelism observed would be enormous due to all
the unsuccessful production evaluations. But in a sense that would be cheating; the high
parallelism would not be significant in such a grossly inefficient system. The point is that

[22] It was loo costly fo run Ih» simuialor on ill cycles to get data for a total run.

Chapter 5 Parallelism Page 79

HSP has a reasonable level of basic efficiency, and yet has a high parallelism.

Since processor utilization during the action phase is determined solely by the number
of processors, it is instructive to factor that out to see parallelism for the recognition
phase alone. Figure 5.9 shows this both for the real runs and simulations.

« of processors
real runs simulations

10 10 20 30 40 50

2 processor utilization
Cycle 10 100 99+ 99
Cycle lb 100 99+ 99+ 92
Cycle 9 100 99+ 99

all cycles

Effective parallelisr
Cycle 10
Cycle 15
Cycle 9

90 78 - - - - -

92 85 83 72 60 45 36
97 93 97 93 82 74 59

87 82 m .. _ _ _ 100 99 96

1 1.9+ 3.9+ 6,3 7,8 - -
1 1.9+ 3.9+ 6.4 8.5 8.3 14.4 17.9 17.9 17.9
1 1,9+ 3.9+ 6.8 9.3 9.6 18.5 24.7 29.5 29.5

at! cycles 1.9+ 3.8 6.1 8.2 -

Figure 5.9 Parallelism in recoinilion phase of HSP POM

It was not possible, within the scope of this thesis effort, to get a good estimate of
HSP parallelism for a full KS configuration operating on a complete input utterance. But we
can get a rough picture as follows. We expect a 10 to 20-fold increase in utterance
length to cause a similar increase in the size of each cycle, and little or no increase in the
number of cycles (assuming instantaneous input). A 5 to 10-fold increase in the number of
KSs would probably produce increases in both cycle size (2 to 3) and number of cycles (3
to 4). (The latter because of sequential dependencies between some KSs). The combined
effect on cycle size would be a 20 to 60-fold increase.

Cycle size is the prime determinant of parallelism during recognition. Cycle 15 is

[23] Thor« is «vidonc» (m«n»ion»d in ChapUr 4) lo »uppoH (his claim. HSP •ffiei»ney it comparabl« lo <wo olhsr

PSAs: OPS and PSNLST.

Page 80 Parallelism Chapter 5

about 3 or 4 times the size of Cycle 10, with an increase in utilization from 78^ to 857.;
and Cycle 9, which is 2 or 3 times larger than Cycle 15, brings utilization from 857 up to
937. A 20 to 60-fold increase in cycle size would bring the smallest cycle in the POM run
up to twice the size of Cycle 9 (the largest). Thus we expect a utilization of close to 1007
during recognition, at least for 10 processors and probably for even larger numbers. This
being the case, the determinant of overall parallelism becomes the recognition-action ratio
and the efficiency of the action pt ase (see below).

In HSP, lost parallelism can be grouped into idle time and blocked time, as with HSII,
although they are not really comparable since they stem from different causes in the two
systems. For example, HSII blocked time comes from the explicit synchronization of
Blackboard access; HSP does no explicit synchronization, but the implicit synchronization of
the PS cycle is a cause o- idle time (during both recognition and action). As noted earlier
this HSP system has only about one-third the knowledge content of the HSII simulation
configurations. This makes detailed HSII-HSP comparisons inappropriate. However, the
sparser knowledge content of HSP operates at fewer information levels, so that activity
per level is not that different in the two systems. Figure 5.10 shows the data on lost
time from the real HSP runs. The totals should be 100, but fall short for the 7 and 10
processor runs. This is likely due to hardware memory interference, which existed in small
amounts in spite of special efforts to eliminate it (see following section).

« processors 1 2 4 7 10

7. processor util. 100 94 82 66 53

7 idle (total)
recognition
action

0
0

. 0

5
.4

6

16
1
15

27
3
24

34
5
29

7 blocked (total)
action interp.
queue access

0
0
0

.2
.2
.0

1
1

.01

3
3
.02

7
7

.1

Total 100 99 99 96 94

Figure 5.10 Lost processor time in the real HSP POM runs

[24] Depending on how i{ is measured One useful measure is (• of productions evaluated) « (• fired) * (• now
changes). This yields a Cycle 15/10 ratio of 146/27 • 5.4 and a Cycle 9/15 ratio of 384/146 • 2.6. A more
exacting measure might weight these factors differently according to how much »ach contributes on average to
execution time. Note that the actual execution time ratios (recognition only) are: Cycle 15/10 - 4.3 and Cycle

9/15-2.1.

fftmrn

Chapter 5 Parallelism Page. 81

The main source of idle time (and of lost time as a whole) is the sequential nature of
action execution in each cycle; i.e., all processors but one are idle while that one performs
all the WM changes one at a time. The amount of such action-idle time depends directly on
the recognize-act ratio, which is 15 overall, but varies from under 3 to 54 across
individual cycles. These ratios are not as high as would be expected for a more complete,
more knowledge-rich PS, so action-idle time in HSP may be artificially high.^S Action-idle
time also rises rapidly with the number of processors, for obvious reasons. The simulation
data shows that action-idle time for Cycle 15 rises from 2^Z of processor time with 10
processors to 437. with 50.

Such a serious drain on utilization leads one to think of system modifications. Two
possibilities are described here. The first is a simple modification in the way WM changes
are stored. Currently they are encoded as linked list structures in the same manner as WM
elements. Adopting the more rigid encoding of a vector (with 2 to 5 elements, depending
on the type of change) would allow changes to be stored in a fixed array. Then the act of
deleting all changes from the previous cycle, which currently takes 407, of action time,
could be reduced almost to nothing (just the resetting of an array index). This would
increase utilization in the POM run with 10 processors from 537. to 617,. A second
possible modification is to actually execute the changes in parallel during the action phase
'but still requiring that action execution not begin until recognition is complete). Some
synchronization would be necessary during parallel action execution, to preserve the
integrity of list fields of WM elements, and to control modifications to the WM index
structure. This synchronization would be a minor part of the total change execution, so
would not seriously inhibit parallelism. The gain from parallel action execution is roughly
estimated for the 10 processor POM run to be an additional increase in utilization from
617 to around 757.

A second source of idle time in HSP is a consequence of the global synchronization of
the recognize-act cycle: near the end of the recognition phase of each cycle the number
of productions left to execute falls below the number of processors, leaving some idle.
This recognition-idle time is a factor of 5 or 6 smaller than the action-idle time, but its
relative importance would increase if optimizations of the action phase a? outlined above
were incorporated. Fortunately, increasing cycle size works in favor of reducing the
percentage of recognition-idle time, so that more KSs and longer input utterances will
balance somewhat the negative effect of more processors. For example. Cycle 9 is about
2 or 3 times, as large as Cycle 15, and has only 17. recognition-idle time compared to 47.
for Cycle 15.

The principal source of blocked time in HSP is the critical section surrounding action
interpretation. This relatively large amount of interference comes more from the
particular implementation than from the HSP architecture. The architecture dictates only
that representations of changes and WM elements be accessible by all the processors. The
current HSP implementation puts these in a single shared memory area with a mutual

[25] One expects thai the knowledje in HSP would become more complete primarily through the addition of mor»
epocialired knowledge. And "more specialired" implios higher recojnition-action ratios, both through morsi
complex production conditions, and a tarier number of productions which must be evaluated to got the sem«

number of firings.

Page 82 Parallelism Chapter 5

exclusion semaphore for creation of changes and new WM . .lents within action
interpretation. One improvemcnf on this is to reduce interference a, dividing the memory
space for changes into several independently locked pieces. An e\/en better improvement
comes as a side effect of the action phase optimization discussed above that encodes
changes as rows in an array. This would dramatically decrease creation time for a change
representations by eliminating several list cell allocations. And since change creation time
is currently a major cost in action interpretation, the size of the critical section would also
be significantly reduced.

A second source of blocked time, interference in accessing the production and change
queues, is insignificant for up to 10 processors. And the simulations indxate that it
remains insignificant (less than 17.) for up io 50 processors.26 Although optim -ition of the
queue-accessing critical sections is currently unnecessary, they could be 20 times faster if
written in machine code rather than interpreted L* code. Such an optimization could be
resorted to if a great many processors were to be used.

5.6 Hardware Memory Interference

The problem of hardware interference due to multiple processors accessing shared
memory is a crucial one for the current version of HSP running on C.mmp. The main reason
for this is not some feature of the PSA of HSP, but rather the interpretive character of L*
(the implementation language).27 This section is included here largely for general interest.

It is a fact of life on C timp that 3 or 4 PDP-11/40 processors can saturate a single
memory port. The processor-memory crosspoint switch adds some overhead to the
memory cycle time; but worse, if clusters a number of independent memory modules (each
with 8K, or 2 pages) into a single memory port. For example, suppose four processors are
accessing pages in four different memory modules. Presumably, memory concurrency
across the modules would mean that there is no interference. But if all the memories
happen to be connected to the same switch port, concurrency across modules helps little,
and serious interference results.

Given this fact of the underlying hardware, it would seem crucial for a user of the
system to have control over the placement of his program and data pages in primary
memory. Unfortunately, this is not the case.28 However, a feature was added to Hydra to

[26] Although th« •imuialor e»nnol predie» qu«ut accut mUrf«r»nct •ecuralaly, it tuffieM for thii upp«r bound

of 11

[27] There ia a minor conneelion, in that PSA» seam Io require inlerpraler» of aome »ort In Iheir implemenlatlon, and

Ihus will always exhibit some degree of lopaidedneaa in (heir memory aecaaa pattern.
i

[28] The ordinal design for C.mmp included a cache for each proeeaaor. Thf» would preaumably eliminate the

interference problem.

Chapter 5 Parallelism Page 83

allow a user to find out after the fact which memory port any given page Is In. This
allowed a strategy of frial-and-error to hit upon a distribution of pages across memory
ports that would result in negligible interference.

Any system with a reasonably unconcentrated pattern of memory accesses would
probably not experience serious degradation on C.mmp due to hardware interference.
Unfortunately, HSP is close to a worst case. It is constructed as a double-layered
interpretive system, as shown in Figure 5.11; the production language is interpreted by
routines written in the L* language, which is itself interpreted by machine code routines.
Thus a majority of memory accesses must be to the L* kernel (i.e., the interpreter,
primitives, etc.). Further, most of the remaining memory accesses must be to the HSP
kernel {production interpreter, etc.). It can be expected that only a very small fraction of
accesses will be to the real code and data of the system (i.e., productions, WM elements,

and the WM and PM indexes).

Productions

I
| Production interpreter

1
L* routines

I
| L* interpreter

1
Machine code

I
| Hardware of machine

Figure 5.11 layers of interpretation in HSP

To investißate the pattern of memory accesses in HSP, some data was gathered with
the Hardware'Monitor.29 A small (about 10 second) section from the condition evaluation
phase of an HbP test run was monitored to obtain a profile of memory accesses across the
entkre user a'Mress space. The monitor sampled instructions at a rate of about 17. for a
tot»! of 56,000 sampled instructions. Figure 5.12 shows the results. (Note that page
slü» 0 >s the fU st 4K portion of address sp^ce, and so on). A complete breakdown into L*
kernel vs HG£P Ujrnel vs. productions and WM elements was not possible because data
access tor th? U and HSP kernels Pf« lumped together. But it can be seen that SHRPG1
(slot 1), which contains most of the L* kernel machine code, received 687. of the memory
accesses,30 And considerably less than .37 of accesses were to productions, WM elements,

and the WM and PM inde'/es.

[29] The HarcWt w. vn.io. m y ****. h.rdwa.« d. .ic, .uppo.Ud by ill own PDPU/45, with monMorin« p.-ob..

connecled dir»e«ly lo T; , ,F V.rdwtr» H can be used lo make a treat variety of meaaurementi. See [Marethe.

1977] for further detail».

[30] An interesting side «ote is »hat about 702 of those (and thus 507 of the total) were to the U interpreter,

which is only a little over 100 words long.

v _-«•'■ 's^i***

Page 84 Parallelism Chapter 5

page shared
slot 7, page or local
0 12 Stack page local

1 68 SHRPG1 shared

2 1.5 SHRPG2 shared

3 17 LOCPG local

4 1 HSPPG shared
SYSPG shared

5 < .1 WMPG shared
SYS2PG shared

6 < .1 HSPU6PG shared
all PM pages shared
PMXPG shared

< .1 HSPU7PG shared
all WM pages shared
PMX pages

contents
L* execution stack and operand stack

L* kernel code (incl. most machine code)

L* kernel code and data

L* kernel data arid HSP kernel data

HSP kernel code (incl. production interpreters)
Overlayed L* code

HSP data (incl. WM index)
Overlayed L* code (small amount)

Overlayed HSP kernel code and utilities
HSP productions
HSP PM index and related kernel code

Overlayed HSP kernel code and utilities
HSP WM elements
HSP continued PM index shared.

Figure 5.12 Percentage of memory accesses in HSP by page slot

This data suggested that memory interference would indeed be a serious problem as
long as SHRPG1 was shared among processors. Partly by a stroke of good luck, SHRPGI
contains nothing that has to be shared, so it was possible to turn it into a local page to
give each process its own copy. From the data in Figure 5.12 it can be seen that once
SHRPGI is made local, a staggering 977. of memory references are to local pages. Thus, if
C.mmp could be run with each processor's three local pages in a separate memory port,
only 37» of each processor's memory accesses could possibly inleifere wi'.'' other
processors, and memory interference would be essentially non-existenf. In »ft He« this
ideal binding of pages to ports was not attainable. But with k I tile trial-anc-üt'■:*■ 'S was
possible to keep more than two separate copies of S'-iKPCl vV u ending D •'?■ ^«e Mtf«€
port, and this was sufficient to keep interference «it " riejlrf ale Jew

To demonstrate the seriousness of the inter fererce pro' '-»nn, H5P fU's nn H.mmp wer1?

[31] In on« run six ■tfsmplt wnra nocessary.

[32] The data given below in Figure 5.13 show thai (wo ce^itl "* SW*?^! than"« ■ oori gives >.n(y about ''t
degradation.

■XrjC

Chapter 5

Page 85
Parallelism

■ „f QURPGI Fipure 5.13 shows the results. Two
macle without the '"^ual copies of SHRpG • F gU s ^ ^ mt with

processors sharing SHRPG1 5how
h ^'y^^fand 10 processors, additional processors

10 processors. Note that somewherbe^^^^^ io interfering processes are

arhiallv bepin o ncrease total time, MISO
consilrabVtess el.ective Ihan 4 non-intader.ng ones.

processors 1 10

Time (sec) QI? 492 281 199 173
With SHRPG1 copied 917 432 «l i
Without SHRPG1 copied 917 513 412 321 353

Factor of degradation due ^
to interference i

Figure 5.13 D,,^''- »' HSP execuU.a tao dU. to h.rdw.r. m.mory intortoren«^

Bu. what ...«. wouid opU.izalion "^^^^^^yp'^l^.etHn.f^ach.n:
pages? Removing Ihe L. inlerpretahon level ^ ""P'1 ^'™^ d,f.. productlons, and
oödä would result in . higher percent^ |evel ol Hsp

WM slructures (currently '"''"'"^^J^^f^^e^o the HSP Kernel code being

^t-^^^^t^ or WM element There

would still be much to gain by copying code pages.

Summary

No separate sugary tor this chapter appears here. See the section on paradells. to

the conclusion chapter (Chapter 7).

zr;.rr.r;.rÄtrr..»"r.rÄ. »..- > - -
they .r. mix-d with L. Kernel d.«. .cc... in th. d.t. of Ih. f.gor..

Page 86 The Small Address Problem Chapter 6

J ^

Chapter 6 The Small Address Problem Page 87

Chapter 5

The Small Address Problem

A single C.mmp processor, being a 16-bil PDP11, can only access 54K bytes in its
address space. But ample amounts of primary memory are available on C.mmp, around '-vo
million bytes. This mismatch leads to the problem of how to obtain access to more memory
than fits in the address space, and we call this the small address problem. As discussed in
[Wulf and Harbison, 1978], the hardware designers were pretty much forced into this
problem, as it seems to be inherent in any multiprocessor built from si.iall machines. It was
originally hoped that large systems could be decomposed into a large number of processes
each addressing only a small amount of memory, but experience on C.mmp has not borne
this out except in exceptional cases.

To circumvent the small address problem, Hydra and the C.mmp hardware support a
partitioning of every processor's address space into 8 slots, each of which holds one page
of 8K bytes. Relocation registers provide a fast way of swapping these pages in and out
of the slots in the address space. The time required for a swap of one of these pages,
including operating system overhead, is only 20 microseconds. This fast swap time makes
possible various overlaying schemes that would be infeasible on a more typical computer
system forced to swap to secondary memory/

The C.mmp version of the implementation system L* [Neweü, McCracken and Robertson,
1977] provides some support tor dealing with the small address problem.3 Within L*, the
four page slots which make up the upper half of a processor's address space can be used
for swapping pages. The current version (D) of L»C.mmp binds every overlay page in a
system to a fixed slot/' Overlays defined as lists of pages (at most one page for each of
the four available slots) can be inserted inio the address space and then later removed
(returning the previously addressable pages). This overlaying operation can be used not

[1] Thig is i microcod«d function of lh« op«ri(inj tyBUm. Tht prtvioui nor>-microcod«d vtrtion took 200

microsacondt.

[2] Use of the relocation rBfiBUr» ia »nalogour in tomt rasptcti to "baa* ragiatar" uaa(« on 360-370 •tyl»

macSmoB

[3] A general Hydra address-Bpace-inanagemenl facility haB been designed (Hydra group, 1977], but there i« a* yet
r.o experience with its use Several large non-L« syslema that hav» been built en Cmmp/Hydra have implemented

their own specialized overlaying mechanismB. The Hydra kernel itsslf ia a prime example of this.

[4] Of the lower four page slots, Hydra claims one and L« the other three ~ they muet not be overlayed.

[5] Version A, which allowed pages to float into any unused slot, ran afoul of the re»ultin| complication« and we«

abandoned.

Page 88 The Small Address Problem Chapter 6

only for large, modular subsystems, but also at the level of individual routines. In fact, a
sizeable number of the routines in the basic L* system exist in overlays, and so must be
swapped in when executed and then back out. Another overlay operation is provided to
swap in an overlay without first preserving addressability of the overlayed pages (I.e., a
replace operation rather than an push). This is useful for iterating through the multiple
pages of a large data structure addressed through a single slot.

The cost in execution time of these overlaying mechanisms is not severe. In a run of
the HSP POM+RPOL configuration, only 37. of execution time was taken by overlay
swapping. A second form of execution overhead necessitated by the overlay structures is
time to do temporary copying of data structures into the fixed portion of the address
space7 to preserve their addressability during conflicting overlaying operations. This
overhead amounted to only another 4 to 97. in the above-mentioned run. Thus execution
overhead is not the problem.

The real essence of the small address problem is what it does to design, coding and
debugging times. Working with a system requiring more than just a few overlay pages
becomes quite complex. Correctness of page accessibility assumptions must be
painstakingly maintained. The absolute page boundaries cause severe allocation problems
for large, growing data structures. And some attention must always be given to limiting the
amount of overlay swapping (though, as noted above, that is less important).

The debugging difficulties stem from this: if, while accessing data on an overlay page, a
routine makes a mistaken assumption about which pages are currently addressable, there
is fundamentally no way to detect the error.® The result will be a totally unpredictable
error, and the symptom may not appear until long after occurrence of the error itself.
Such errors are notoriously difficult to find, and they occur with dismaying frequency, at
least until the programmer has learned to be careful about such things.

The small address problem is serious, perhaps even crippling, for many large systems.
It thus comes as good news that the HSP architecture provides some help. The basic
idea is this: WM elements are spread across multiple pages to be overlayed In one slot,
and productions in multiple pages in another slot. Then once the small address problem tws

[6] This was without tha microcodad oparalinf lystam function, but that matter» litttt tinea ovarhaad within L*

dominated.

[7] Tha lower four pa|et of tha addraat ipaca ara called fmed tinea thay cannot ba ovarlayed.

[8] If tha data item it accattad via an L» external name, tha error will be caught at 'compile-time' tince external

name dictiorrariet and overlayt are tied together But many data tccettei in the course of program execution

are not via external namat.

[9] At what cuiit in extra mental load?

[10] HSII was too large to fit on its PDP10, and thit problem was tolved by overlaying tingle KSs (end tmalt

groups) from a secondary ttorage device (drum). Tha HSII architecture thus helped solve that problem, but such

a solution would not work on C mmp since the KSs ara too large to fit at once into the tddreau space.

•mm

Chapter 6 The Small Address Problem Page 89

been solved for the HSP kernel,11 the system can be grown indefinitely (barring other
limits) without further concern. The characteristics of the HSP architecture that permit
this ar-3: (1) the existence of all long-term knowledge in the form of small, self-contained
units (productions), and (2) the existence of a single global working memory, again with
small units. (WM elements do reference each other, but this is handled by a special "large
address" data type which identifies a page in addition to an address). Theoreticall> the
address space slots for productions and WM elements need only be large enough fcr a
single unit, but larger slots reduce overlay swapping.12 A large slot is particularly
important for the WM elements since many of them are accessed for every production
evaluated. In HSP a page slot can hold roughly 50 to 200 productions or 15 WM elements.

Since a key part of HSP's solution to the small address problem is a distribution of
large, dynamic structures across multiple pages, there are formidable allocation problems.
HSP has so far adopted simple and inflexible solutions. For example, the way in which the
PM index is spread across pages is dependent on prior programmer knowledge of the total
set of productions to be included in the system. Also, the distribution of WM elements
across pages is controlled via a conservative maximum number per page, ignoring the
actual amount of space used. The situation of running out of space on some page during
creation of a WM element cannot be handled. These and similar problems must be solved
before HSP can be considered adequate for general use as a PSA. Their solulion, though

difficult, seems straightforward.

[II] A •ub»t»n»i»l l*ak in iUelf |Jv«n iU «iz* »nd »h» tilt of lh« und«rlyin| L« ty«»»m.

[12] The UM of condition «nd .e»ion proc.durti ilfo ■rfWf for lar|tr tlo«! iinet • procdur. ind ■II production«

utinf il mutl ba eoncurronfly »ddrttMbl«

 SP. —"■ "Mt***

Page 90 Conclusion Chapter 7

ii »■ i in

Chapter 7 Conclusion Page 91

Chapter 7

Conclusion

The cenlral goal of this thesis is to evaluate the desirability of using a production
system architecture (PSA) to implement a Hearsay-IHike speech understanding system.
The approach of the thesis involved implementation of a PSA (called HSP) on the
C.mmp/Hydra multiprocessor system, and translation of a body of HSU KSs into productions
for HSP. The final evidence is rather ragged in several respects, but this was anticipated.
The large size of the HSIl-to-HSP KS translation effort, and the instability of Cmmp and its
operating system Hydra are two of the main causes of this. Another is the inherent
difficulty of comparing two systems as complex as HSII and HSP.

The promise of PSs for speech understanding was introduced via a list of characteristic
implementation problems (see Figure 1.1). How has HSP fared with respect to the
problems? Most of the evidence deals only with the first four problems: adequacy of
representation, space efficiency, time efficiency, and the small address problem. No
systematic study was made of the remaining six problems: error, directionality,
augmentation, testing, debugging, and performance analysis. This does not reflect the
relative importance of the problems. Rather it results mostly from time constraints. Also,
the decision to maintain close comparability of HSP and HSII prevented free exploration in
HSP of solutions to many of the problems.

The main body of this chapter is structured as a list of assertions based on the thesis
research. Following the assertions, a short section brings together the various assertions
for an overall conclusion taking their relative importance into account. Next comes a
section discussing what the next steps should be if the evaluation of a PSA for HSII were
to be continued. Several questions have emerged as the important ones still to be
answered. A final section summarizes the contributions of the thesis.

7.1 The Assertions

The assertions are organized into five categories, roughly paralleling the division of
the thesis into chapters. The exception is that representation and architecture are
considered together here.1 The assertions are stated in a strong form. A discussion

[1] This ia appropri»»» bacauaa arehiUe^ural iaauas hava an impact on tha rapraaanUJion of apaach Knowl»d|a,
even »hough »he issue» may have been setlled without regard to »hia impact. For »xampla, »ha uaa of •xplici»
condi»iona on changei (discussed below as assarlion 4) was mo»ivB»ad purely by architectural conaideretiont.

Vet it five« extra expressive power for knowledge representation.

mH^m-^t^m

Page 92 Conclusion Chapter 7

following each assertion explains it and summarizes the supporting evidence. In. cases
where the evidence is weak, the assertion is qualified appropriately. Figure 7.1 gives a
preview.

Chapter 7 Conclusion Page 93

Representation and Architecture

1. HSP productions are adequate for representation of all HSU speech knowledge.
2. The adequate architecture of HSP is simple.
3. Translating HSII declarative knowledge to HSP creates problems of multiple use.
4. Explicit condifionality on changes is a strong feature of HSP's architecture.

Space Efficiency

5. Procedural HSII knowledge decreases slightly in size when translated to HSP.
6. Declarative HSII knowledge increases in size by up to half an order of magnitude.
7. Total HSII knowledge increases in sue by up to half an order of magnitude.
8. HSP requires a much larger global working memory than HSII.

Time Efficiency
*

9. The implemented time efficiency mechanisms in HSP are critical for its viability.
10. The time cost of HSP relative to HSII is at least two orders of magnitude.
r I ' ocal working memory and control are the prime sources of HSII time efficiency.
12. implicit pointers between WM elements in HSP greatly enhance time efficiency.

Parallelism

13. HSP exploits parallelism with lower overhead than HSII.
14. HSP achieves higher parallelism than HSII.
15. The limiting factor for !;3P parallelism is sequential action execution.
16. Hardware memory interference does not seriously limit HSP parallelism.

Small Address Problem

17. The HSP architecture aids solution of the small address problem.

Figure 7.1 Assertions of the thesis

Before beginning with the assertions, we summarize briefly what the assertions are
based on. For more information on the supporting evidence, consult the appropriate
chapter in the body of the thesis.

Twelve HSII KSs were translated to HSP productions, and two of them were singled out
for particularly thorough translation: POM, which recognizes syllables from phone-sized

1

Page 94 Conclusion Chapter 7

input Degments;^ and RPOL, which maintains the interrelationships of hypothesis validities.
These translations provide the basis for comparisons of representation in HSII and HSP,
notably for adequacy and space efficiency. The space efficiency comparisons are done
separately for declarative and procedural HSII knowledge, since they behave differently
under translation to HSP. Some of the comparisons are projected to include KSs that were
not translated, on the basis of moderate understanding of how these untranslated KSs are

structured.

Assertions about important features of the HSP architecture are supported by
comparisons of HSP with three related PSAs: PSG [Newell, 1972], PSNLST [Rychener,
1976] and OPS [Forgy and McDermott, 1977], which represent an historical progression in
development ai CMU. These comparisons are also relevant to the assertions about time

efficiency, since this is always a major concern for PSAs.

Equivalent HSII and HSP configurations containing only the POM and RPOL knowledge-
sources were created and run on the same input (HSP being run in uniprocessor mode in
this case). The data from these runs, once corrected for differences in the underlying
systems,^ support assertions about time efficiency.

Assertions about parallelism are based on multiprocessor runs of HSP (with the same
POM + RPOL configuration), with up to 10 processors on C.mmp. Comparisons with HSII
use data from the multiprocessor simulation of HSII by Fennell and Lesser, although their
KS configuration is not directly comparable to HSP's. HSP parallelism is estimated for
larger KS configurations, based on data from the existing configuration and knowledge of
HSP's internal structure. A special HSP simulator was built and validated against the real
multiprocessor runs. It collects data from uniprocessor runs and uses it to predict

parallelism for larger numbers of processors (up to 50).

Now we begin with the assertions:

Representation and Architecture

1, HSP productions are adequate for representation of all HSII speech knowledge.

The basid evidence for adequacy4 is that a large number (12) of HSII KSs were

[2] POM wBi chosen tueaui« it it on» of 1h« moil comploK »nd v»ri«d of all «h« HSII KSt. U h«t «wo inUrm.di«»»

(•valt of ropr»BBn(»tion b»>w»on input »«tiMnli »nd iyllabtat, ind roujhly ■ do«n proe»«tln» ■(■(•■, iom«

limpl« and aoma quit» complex in Ihemselve«.

[3] la., L. is »lower than SAIL.

[4] By adequacy wa do not mean theoretical adequacy (which it trivially preaent), but rather aomathin| wa mi»M

call "representational practicality". We alao do not mean to include time efficiency.

Chapter 7 Conclusion Page 95

translated to HSP productions. There are nearly 20 other KSs which have been used at
some time throughout HSII's development, but a moderate acquaintance with them has
turned up no reasons to doubt HSP's adequacy. Efficiency is another matter (e.g., see

assertion 11).

There were several minor difficulties encountered in the KS translation process, for
example: iteration over WM element list fields, controlling duplicate actions, tallying events,
and redundant arithmetic expression evaluation. Yet these difficulties are not serious
enough to constitute a refutation of HSP's adequacy. Most of them could be solved through
design iteration of the HSP architecture, without deviating from basic PS philosophy.

HSII KSs do a significant amount of simple table lookup from local arrays containing
long-term knowledge. This might at first seem to cause a representation problem for HSP,
but actually an array translates cleanly into a mutually exclusive set of productions, one
for each entry. Direct indexing to select an array entry in HSII is essentially the same as
selecting the correct production from the set in HSP. In other words, a PS is really a
large, complex table lookup, while an array access is just an optimization of the lookup
process that is possible with a highly uniform set of productions. However, a PSA is overly
general for simple table lookup; the resulting space and time costs are discussed below
under assertions 6 and 10.

The adequacy of HSP for speech understanding provides an additional data point for
the broader question of adequacy of PSAs for artificial intelligence applications. More
extensive evidence for adequacy has already been reported by Rychener [1976], in a
study of six classical artificial intelligence programs. Although HSP and PSNLST
(Rychener's PSA) differ significantly in their details, they are essentially the same when
viewed from the world of artificial intelligence languages as a whole. Rychener's tasks
span a large part of the domain of artificial intelligence: algebra problems, learning
nonsense syllables, puzzles, chess endgames, natural language, and blocks manipulation.
Yet the speech understanding tack of HSP has some characteristics that set it apart: (1) a
rich set of relatively independent knowledge sources, (2) each of which has a sound
theoretical basis, providing lexicons of basic entities and rules relating entities, ant' (3) the
large direct recognition component, i.e., no need for expensive serial reasoning.
(Characteristic (2) is responsible for the large amount of knowledge which is conveniently
represented in table form).

As for adequacy of PSAs in general for the speech understanding task, there can be
little doubt. HSP is a simple PSA (see assertion 2), doing without several features that
give an architecture more power. Further, the few idiosyncratic features that HSP does
have do not affect power of expression so much as efficiency, which is beside the point
for adequacy. Thus we can conclude that HSP's adequacy must extend to PSAs in general.

2. The adequate architecture of HSP is simple.

This assertion is of interest only in the context of assertion 1. Simplicity without
assurance of adequacy is trivial.

Contrary to standard architectural pi dctice for PSs, HSP has no conflict resolution; on

— -— '■— ■" ' mmmmmm><~ i*"—; •b^nxfa"—

I

Page 96 Conclusion Chapter 7

each cycle if fires every true production. This permits a natural expression of the
multiple, independent KSs that come from HSI1 and the speech task. Perhaps more
importantly, it allows much greater parallelism: while PSG, PSNLST and OPS respond to
only a few changes and fire only a single production each cycle, HSP can respond to
hundreds of changes and fire a hundred productions or more. Such a feature could
seriously impair a PS's ability to switch focus rapidly in response to a novel situation or
new external stimulus.^ But this does not seem worrisome for HSP since most of the
multiple firings are operating in parallel on separate levels or time regions of the
representation of the speech utterance.

The other side of the coin from responsiveness is stability: the ability of a PS to
maintain a continuity of action over time. According to Rychener [1976] and McDermolt
and Forgy [1978], conflict resolution also plays an important role in stability. In faqt,
Rychener ranks event order (a conflict resolution principle which favors those production
instantiations based on more recent WM changes) as the most essential feature of PSNLST,
being used particularly for coordination and sequencing. In the absence of conflict
resolution, HSP must occasionally resort to a somewhat inflexible mechanism called an n-
cycle delay. This involves a chain of productions that waits for other activity to finish by
marking time for a certain fixed number of cycles.

HSP permits neither disjunctions nor negated conjunctions within production conditions.
(Negations of single condition elements are essential ann of course permitted). These
restrictions simplify the production interpreter without seriously affecting adequacy of
representation. Disjunctions or negated conjunctions can be eliminated from a production
by splitting it into several productions, at the cost of some decrease in space and time
efficiency. This splitting of disjunctions was frequently necessary in HSP, usually to
accomplish iteration over a list field or a WM element. But this form of iteration is
unnatural for a PS, having resulted from mimicking of HSII. Splitting of a negated
conjunction was necessary in only a few cases, but the result was typically a complicated
profusion of productions.

HSP has no mechanism for special case inhibition; i.e., preventing a true production
from firing when another production representing a special case of the first one is also
true. Such a mechanism would have complicated the production interpreter and probably
caused a serious reduction in parallelism. Doing without special case inhibition is an
inconvenience. Either the more general production must be augmented to make it
complementary to the related special cases, or special productions must be added to
detect when both general and special case productions fire and favor the special case
result.

HSP's production language is at least half an order of magnitude simpler than HSII's
language (a subset of SAIL). This conclusion is based on a comparison of primitive counts,

(5] See, for example, »he importance McDermoH »nd Forjy [1978] »ssijn to lueh responsivenete, which they cell

sensitivity.

[6] The time cost is due to redundant evaluation of the same condition element in different productions. This cost

is kept small by PSA efficiency mechanisms discussed under assertion 9.

Chapter 7 Conclusion ' Page 97

number of data t>p-«, and sizes of runtime support and compilers. The extra complexity of
SAIL permits efficiency of internal KS computation {see assertion 11).

3. TransLatiriB HSII declarative knowledge to HSP creates problems of multiple use.

A basic feature of the HSP architecture is the absence of any form of declarative long-
te.'-m memory. Thus all long-term knowledge must be encoded as productions. Since each
production specifies under what conditions its piece of knowledge is to apply, there is a
problem with using that knowledge under different circumstances/ In some cases the
problem can be solved by merely duplicating the knowledge, with a different production
for each different use. This was done frequently in the HSP KJs, but will not extend to
systems of growing complexity where multiple use can be expected to increase.
Subroutines of productions provide another solution to the problem of multiple use. But
subroutines require a high degree of similarity of the uses, plus rigid conventions for
communication. A third, somewhat novel, solution employed in HSP is to deposit knowledge
temporarily into WM whenever there is a reasonable expectation that it may be useful. In
WM it is available in declarative form to whatever production wants to make use of it.
Again, this implies conventions about how the knowledge is encoded in WM, plus a
commonality in the variant conditions that can be used to trigger the depositing into WM.
It is not known whether these solutions to the problem of multiple use would be adequate
for much larger and more complex systems than HSII, but the suspicion is that they would
not.

4. Explicit conditionality on changes is a strong feature of HSP's architecture.

The first condition element of every HSP production explicitly tests the nature of a WM
change, and must match a change made in the previous cycle. Thus a production cannot
fire any time its condition (excluding the first element) is true, but only when a particular
type of change (tested by the first condition element) occurs in conjunction with a true
condition. (Normally, the change causes the condition to become true). This explicit
condition on a change has two important uses in HSP: (1) It provides the basis for the PM
index described below under time efficiency. The PM index is an alternative to Forgy's
scheme [1977] for reducing the dependence of execution time on PM size. (2) It solves
the excitatory instability problem. A production cannot continue to fire cycle after cycle
once become true, because it is also conditional on the occurrence of the change that
made it true.

[7] This problem is also r«eojmz«d by »h» InsJructabl« Produeiion SysUm »roup (Byeh»n«r, Forjy, Langlay,

McDermoH, Nowoll and Ramakriahna, 1977], bul In »h« conUx» of how \o avoid ropotiUon in ins»rue<int <h«ir PS
aboul muKipla uses. Thay propoa« general mapping machanisms (in lh« form of mor« productions) to brid(« fh«

gap between variant use»

^.s«**— ■—

Page 98 Conclusion Chapter 7

Space Efficiency

5. Procedural HSII knowledge decreases slightly in size when translated to HSP.

Detailed space analysis of the POM KS shows that about 160 Kbits of long-term HSII
procedural Knowledge translated to only .7 times that much in HSP. There are two
possible explanations for this decrease: (1) Since HSP productions are interpreted, a more
compact representation is possible; and (2) HSP can represent condition testing and
searching of the global working memory more concisely. However, the explanation is
probably more complex than this, as suggested by high variation of the HSP/HSII space
ratio. Eleven subparts into which POM was partitioned had ratios varying from .4 to 2.2,
averaging to the .7 quoted above.

It was not possible to do space accounting of procedural knowledge for most of the 11
other translated KSs because the differences between the HSII and HSP versions are too
great. However, crude data for one other KS, RPOL, shows an overall HSP/HSII space ratio
of 1. Since HSII RPOL is virtually all procedural, this yields a procedural ratio of about 1,
which is consistent with assertion 5 within limits of accuracy.

The procedural knowledge bit counts are supplemented by token counts0 for 8 of the
11 POM subparts, which show an HSP/HSII ratio varying frtm .6 to 3.3, but averaging 1.0.
Thus from a human perspective (assuming that humans perceue size by number of tokens)
there is no change in the size of procedurally-encoded knowledge in translating from HSII
to HSP.

6. Declarative HSII knowlndze increases in size by up to half an order of magnitude.

HSII declarative structures are mostly either simple arrays, dictionaries of spellings, or
linked networks, although all are encoded internally as arrays for efficiency. Arrays
translate to HSP as one production per entry; the networks are typically represented by
one production for each transition, or one production for all transitions out of each state.

H In any case, the number of productions required is large.

Seven instances of large declarative knowledge structures in the translated KSs were
compared for size. Simple arrays require almost a factor of 4 more space in HSP, but
sparseness can be exploited to reduce that factor by the fraction of non-default array
entries. Tables of spellings (actually arrays of strings) have HSP/HSII space ratios of
about 1. Two examples of network structures have tne following ratios: 1.2 (grammar) and
3.2 (state transition network). The overall factor, excluding one exceptional case (a huge
bit matrix), is 1.6.

HSP facilities for so-called condition and action procedures allow a sequence of similar
condition or action elements to be packaged as a parameterized procedure and then

[8] A token is a lexical unit sucS as would b« racofnizsd by Iht lanfuat» compiltr.

Chapter 7 Conclusion Page 99

referenced in many different productions with appropriate parameters supplied.9 These
facilities are crucial for representation of HSU declarative structures because of the large
number of similar productions involved. In the HSP POM KS, a savings of a factor of 10 is
obtained in the number of condition znd action elements that must be represented
explicitly. The bulk of this savings comes from productions encoding declarative HSII
knowledge; the factor is much larger than 10 for these productions alone. Without
procedures, assertion 6 might read "two orders of magnitude" or more.

7. Total HSII knowledge increases in size by up to half an order of magnitude.

In HSII POM, with an overall HSP/HSII space ratio of 1.1, the declarative/procedural
split for long-term knowledge is .3/.7. But this is not a typical split. Many of the large
KSs most recently added to HSII are estimated to be split about .9/.1. Assuming a .9/.1
split for a full HSII configuration would give an overall factor of 1.5, assuming the
declarative HSP/HSII ratio to hold at 1.6. If instead we assume a declarative ratio of 3.8
(the worst observed), we get an overall factor of 3.5. We cannot be mure precise than
this because the declarative structures of the new KSs have not been analyzed. Their
ratios may well be larger than 3.8.

Some related data comes from Rychener [1976] on PS translations of three classic
artificial intelligence systems. Bit counts tend to be 2 or 3 times higher for the PSA, while
very rough measures of source code size (related to our token counts) range from a slight
disadvantage for the PSA to a factor of 3 or 4 advantage, depending on the comparison
language. This bit count data agrees with assertion 7, even though Rychener's
architecture is different from HSP, and his comparison systems different from HSII. This
lends some credibility to the generality of assertion 7. However, this agreement could be
mere coincidence; for example, HSP has to deal with data organized in tables, a
disadvantage which does not seem to exist in Rychener's examples.

8. HSP requires a much larger global working memory than HSII.

Many HSII KSs use large local working memories in addition to the global Blackboard,
and these local memories can be highly specialized for efficiency. HSP has only its global
WM, and specialization of it is strongly limited by requirements of generality and uniform
accessibility. This difference in specialization costs HSP less than half an order of
magnitude for simple data items. For more complex data structures such as network nodes
(as used in the SASS KS or the WIZARD procedure of the MOW KS), the cost can be as
much as a full order of magnitude. Furthermore, such complex structures are so abundant
that they dominate the overall cost.

[9] These procedure facilities ire purely for space efficiency. A production Uiin| fhem behevei exeetly ■■ if il! i»»
elements w*re explicitly written out, except for ■ small time efficiency itee in ■aii|ninf parameien \o

variables.

Page lOO Conclusion Chnpfer 7

Time Efficiency

9. The implemented time efficiency mechanisms in HSP are critical for its viability.

Three existing time efficiency mechanisms in HSP give a cortwined speedup of 3 or 4
orders of magnitude over give implemen.^tion (i.e., one that evaluates every production
as a result of every Wfv, . ange, and that searches WM for every condition element
evaluated). All three mechanisms are suggested by analogs ;n the HSK architectui e. See
Section 4.1 for details.

The first, called the PM index, reduces a linear dependence of execution time on
PM size to sublinear by associating subsets of relevant productions (i.e., exactly
those to evaluate) from classes of WM changes. In the POM run only 5 on average
out of the 1000 total productions had to be evaluated per WM change, giving a
speedup of about 200. In a larger system, say one with 10,000 productions, the
number of productions evaluated per change could be expected to be not much
greater than 5 (and certainly much less than 50). This is because new productions
will often tend to be responding to changes different from existing productions.

The second mechanism, use of explicit pointers between WM elements, reduces the
amount of WM searching during condition element evaluation. In the POM run only
one out of every 80 condition elements evaluated required WM searching; the
remainder located the matching WM element directly via a pointer from some
previously matched WM element. This mechanism does not reduce the degree of
execution time dependence on WM size, but does give a constant factor of roughly
10 to 50 overall speedup in the POM run.

The third mechanism, an index into WM according to the first twcj fields of a WM
element, serves to reduce WM searching costs. Since it operates in the shadow of
the second mechanism which greatly reduces the necessity for WM searching, the
WM index makes only a small contribution.

These mechanisms bring HSP to roughly the same level of tim6 efficiency as PSG with
filters [McDermott, Newell and Moore, 1978], PSNLST, and OPS. Comparisons of the four
PSAs were made, but on widely variant tasks, so details cannot be taken too seriously. ^
Underlying differences (machine, implementation language, etc.) were factored out as well
as possible. Results of the comparison show the four PSAs within a half order of
magnitude, or roughly equal in time efficiency considering accuracy of the comparison.

[10] It help» thai each of (ha PSAs has affieiency mocf.anisms makin| i(ralaiivaly intanaiilva to PM and WM aiz«.

ChaP,er 7 Conclusion page 101

10. The time cost of HSP re/at. 'e to HSII is at least two orders of mannitude.

In equiva'-nf uniprocess runs of the POM + RPOL KS configuration, HSP took 255 times
as long as hbil (917 sec as opposed to 3.6). This factor of 255 reduces to a range of 6 to
36 when corrected for eight underlying system differences: execution rate of machine,
instruction set of machine, address space size, operating system, implementation system,
degree of ke. nel optim.zation, speech knowledge, and complications of parallelism.

There are problems with the generality of this comparison since it is based on a single
run of a small configuration (i.e., containing only the two KSs: POM and RPOL) The
part.cular identity of the syllable input to POM is not important, but the syllable length is
The syllable used was the shortest possible; the longest possible syllable would increase
he gap between HSII and HSP by another half to full order of magnitude. However, a

factor of only about 2 is expected for a typical mix of syllable lengths. Relative »o the
sma ness of the KS configuration, there are several important HSII KSs (SASS, WOS' 0. and
MOW) wh.ch rely heavily on local control and working memory for efficiency. In their
current form these KSs are seriously mismatched to the recognition-intensive HSP
arch, ecture, and would pay a time penalty of two orders of magnitude or more if directly
translated However, there may exist alternative formulations of these KSs that are better
su.ted to HSP. We estimate that a full KS configuration would add another factor of one to
one-and-a-half orders of magnitude over the POM * RPOL configuration. Putting together
these corrections for syllable length and atypicality of the KSs gives a rough overall time

^c '^uL SS tW0 t0 three-and-a-half orders of magnitude for a full configuration of
Kbs in HSP.

Related data by Rychener [1976] shows a factor of 6 to 10 loss In time efficiency for
PS |;ansl^ons vs. original versions of six classic artificial intelligence systems. Rychener
predicts that additional efficiency mechanisms in his PSA (e.g., compilation as proposed by
Forgy [1977]) could get at least another factor of 5 improvement. Such a large similar
improvement in HSP is not likely, due to existing mechanisms that reduce WM searching to
a low level, but it is not unreasonable to expect an additional factor of 2 or 3 The large
discrepancy of a couple of orders of magnitude between Rychener's six PSs and a full
configuration of KSs in HSP is probably due to Rychener's tasks being better suited to the
recognition-oriented character of a PSA than are the bulk of the speech KSs. The limited
data for the POM ♦ RPOL HSP configuration is in rough agreement with Rychener's data.

//. Local control and working memory are the prime sources of HSII time efficiency.

Since HSP has such limited local control (its actions are simple sequences and cannot

u? .^u^lu T!0' ll mUSt re,y 0n da,a-directed invocation operating from the global
WM. Much of the data-directed invocation might be avoided if productions could be much
larger, compressing multiple PS cycles into single ones. But this is made difficult by an
accompanying blowup in the number of productions.

The cost of data-directed control in HSP has several sources: The creation/deletion of
change elements, creation/deletion of control signals in WM, PM indexing (finding
productions to evaluate based on the changes), and an initial portion of cohdition

Page 102 Conclusion Chapter 7

evaluation for each production that is necessary to reobtain the context of ths preceeding
production. The total cost is estimated to be 30-457, of execution time.

H5P has data-directed knowledge units in the case of POM which are about 80 times
smaller than HSII, and HSP utilizes 500 times as many data-directed invocations during
execution. Yet the overhead is not 500 times greater; HSP data-directed invocations
consume 30-457, of execution time as opposed to 97. in HSII. This is because the HSII
overhead is dominated by the monitoring of Blackboard changes rather than by the actual
invocations.

The other side of the coin from local control is local working memory use. HSII makes
heavy use of local working memory for KS efficiency. Since a PSA contains no analogous
facility, HSP is forced to use its global WM for such functions. The fact that HSP WM can
be read without need of locking operations helps somewhat, but HSP is still at a serious
disadvantage. The HSP run of POM + RP0L made over 5 times as many global working
memory reads as a corresponding HSII run, and more than twice as many creations.
Further, as »entioned above, there are other KSs that make much heavier, use of local
data. We expect HSP versions of these would make hundreds of times as many global
working memory reads and creations as the HSII versions.

Converting HSP to local working memory use without local control makes no sense ~
data-directed (global) control is based on the global WM. Thus the percentage of time
spent in global WM access was estimated for a hypothetical HSP system already converted
to use of local control (except for the few data-directed invocations necessary for inter-
KS communication). The result is that 407. of execution time in such a system would be for
WM access. And since corresponding local working memory operations are so much faster
(50 to 600 times) in HSP than global ones, virtually all of that 407. could be eliminated.

Two other sources of HSP inefficiency are identified: the absence of a declarative
long-term memory facility, and searching of WM. The former consumes 157. of execution
time in the POM run (but some of this overlaps with the WM access costs discussed above).
The latter is insignificant (37.) because of the explicit WM element references, but is
projected to increase to around 307. of total time with a full input utterance.

Taking all the sources of inefficiency together, we can account for roughly a factor of
7 in execution time. This takes us well on the way toward explaining the normalized HSII-
HSP difference of 6 to 36 obtained for the POM run. But it also suggests there may be
other sources. One such possibility is the limited power of the HSP production language, as
exemplified by the inability of a single production to deal with a data list of arbitrary
length.

12. Explicit pointers between WM elements greatly enhance time efficiency.

The use of explicit pointers between WM elements, discussed above under time
efficiency, provides an alternative to other known mechanisms for reducing the impact of
WM searching on production evaluation time. One drawback of its use is a negative effect
on representational issues (e.g., the possibility of spurious pointers to deleted elements);
other common efficiency mechanisms are transparent to knowledge representation. The

Chapter 7 Conclusion Page I03

scheme used by OPS [Forgy, 1977] is relatively insensitive to the number of elements in
WM. HSP's explicit pointers do not reduce the linear dependence of evaluation time on WM
size, but do reduce the Jfect of WM size by a large constant factor (about 80 in the case
studied), and thus will be most useful in applications for which WM size is small to

moderate.

Parallelism

13, HSP exploits paraUetism with Lower overhead than HSII.

The HSP architecture requires only 27. multiprocessing overhead compared to 427. for
Fennell and Lesser's multiprocessor version of HSII [Fenneil, 1975; Fennell and Lesser,
1977]. HSP's low overhead is due to three factors: (1) the absence of explicit WM locking,
(2) the absence of special local data contexts to hold relevant global working memory
changes (as needed by KS instantiations in HSII), and (3) the simplicity of process handling.
The absence of explicit WM locking was made possible by several features of HSP's PS
architecture: the explicit separation of read activity (conditions) from write activity
(actions), global synchronization of the recognize-act cycle, and sequential action execution
(permitted by a high recognize-act ratio).

However, the 27 to 427 overhead comparison is unfair and must be qualified. HSII
provides a more complete locking mechanism for global working memory, allowing locks to
extend over longer intervals of KS activity. (In effect, HSP locking extends only over a
single PS cycle). There are two possibilities: (1) The more stringent HSII locking is
unnecessary. (Lesser and Fennell [1977] feel this may be so because of HSII's basic self-
correcting nature which would allow it to recover from synchronization errors). Then HSII
overhead could be much lower, but could probably not come within reach of HSP's 27,. (2)
Stringent locking is necessary. In this case, HSP's architecture must be augmented to
permit explicit WM locking, with the inevitable result of increased overhead. It is not
known exactly how this augmentation might be done, nor how sharp the increase In

overhead might be.

14.' HSP achieves higher parallelism than HSII.

The degree of parallelism possible in HSP is higher than HSII. HSP's smaller knowledge
unit size allows exploitation of intra-KS parallelism, both in the form of true parallel
activity, and in parallel evaluation of conditions which turn out to be false. This intra-KS
parallelism should account for at least a half order of magnitude improvement In
parallelism. The data obtained shows a much greater HSP-HSI1 margin than this, because
HSII's more stringent locking handicaps it with overhead and lost time. Resolving the
difference in locking between the two systems, while its exact effect is unknown, might
wash away all of HSP's advantage except for some of the intra-KS parallelism.

HSP utilizes 537. of 10 processors in the POM run, which is roughly the -same as that
measured by Fennell and Lesser for an HSII configuration with 2 to 3 times the knowledge
content and an input utterance 10 or 20 times as long (both of which increase the

Page 104 Conclusion Chapter 7

potential for parallelism). Furthermore, while HSII parallelism peaks by the time 10
processors are used, simulations of selected HSP cycles suggest that parallelism continues
to increase with more processors, peaking between 30 and 40 processors. (The peak
parallelism could not be precisely determined, but is probably between 7 and 10).

It was not possible to get a good estimate of HSP parallelism with knowledge content
and utterance length comparable to HSII. But since cycle size is the prime determinant of
parallelism during the recognition phase, and cycle sizes can be projected to be 20 to 60
times larger than In the POM run, we expect close to 1007, utilization of 10 processors
during recognition (and still high utilization with 50 to 100 processors). This means
parallelism will be determined by the recognition-action ratio and the efficiency of action
execution (see the following assertion).

15. The Umiting factor for HSP parallelism is sequential action execution.

Lost time in HSP is dominated by the processor idle time caused by sequential action
execution. For example, in the POM run with 10 processors, 297. of processor time was
action-idle time, while other sources of lost time totalled only 127. This action-idle time
rises sharply with the number of processors: simulations of the POM run show a doubling
of its percentage in going from 10 to 50 processors. High utilizations calculated for the
recognition phase alone confirm the action phase as the limiting factor. With 10 processors,
there is 827 utilization during recognition compared to 537 overall. And since recognition
utilizations approaching 1007- are projected for larger HSP configurations, the efficiency of
action execution assumes a crucial importance.

There are a couple of possible optimizations that can be applied to action execution.
One is to use a rigid, specialized format for change elements In order to reduce the
overhead of fchange element deletion in the action phase. The second is .to make the
changes in parallel. Some additional synchronization would be necessary to protect list
fields of WM elements and the WM index structure; but this would not inhibit parallelism in
a major way. It is estimated that the combined effect of these optimizations could raise
utilization of 10 processors in'the POM run from 537 to around 757.

i6. Hardware memory interference does not seriously limit HSP parallelism.

Measurement of memory accesses in an HSP run showed that considerably less than
.37 of accesses were to shared HSP entities (productions, WM elements, etc.).
Theoretically, this is so low that hundreds of processors could run in parallel without
serious interference. In practice, however, there is also a substantial amount of shared
code in the HSP kernel (production interpreters, etc.), resulting in 717 of all accesses
being to shared pages. This creates a potential for serious interference. z One page

[11] This optimizallon would also decrease blocked lime during the recognition phase since change efemenl creation,

which happen! inside the action interpretation critical section, would also be significantly fatter.

[12] Sharing of code is forced by a limit on the total number of pages in the system. When there are tnciy

processes, we can afford to copy only a few pages for every process.

Chapter 7 Conclusion Page 105

containing U kernel code (including the L* interpreters) accounted for 687. of accesses. By
making multiple copies of this page, accesses to shared pages were reduced from 717. to
37. This was sufficient to ensure negligible interference with 10 processors.

If HSP were optimized by compiling L* code into machine code, thus eliminating
accesses to the L* interpreters, the majority of accesses would then be to the HSP kernel
code (mainly the production interpreters). By making copies of HSP kernel code pages, the
percentage of accesses to shared pages could again be brought down to a low level
(though perhaps not as low as 37).

Small Address Problem

17. The HSP zrchitecture aids solutLon of the smaLL address problem.

The problem of using a large primary memory through the window of a small address
space is a serious and difficult one. This small address problem exists on C.mmp, with its
million words of memory and its 16-bit PDPU processors (with relocation registers), as It
will on virtually any multi-mini or multi-micro-processor system. The HSP architecture aids
the solution of this problem. Once the problem has been solved for the HSP kernel itself,
a PS of any size may be accomodafed without further concern.

A fast relocation-register load operation provided by the underlying C.mmp system is
used by L* to provide overlay facilities. L* permits the upper half of the 32K address
space to be overlayed by 4K pages in 4 page slots (sections of the address space). HSP
uses one of these slots to access productions spread across multiple, mutually-exclusive
pages, and another slot similarly for WM elements. The architectural features which permit
this are the centralization of both long-term and short-term knowledge into memories (PM
and WM) with small, self-contained units.

7.2 Summary of the Aspects Studied

We have shown that the HSP architecture is adequate for representing the HSII speech
knowledge. This includes HSII declarative knowledge which must translate to procedural
form in HSP. Adequacy of HSP was not a foregone conclusion because the simplicity of the
HSP architecture compared to HSII gave grounds for some doubt about adequacy.

Space and time efficiency are another story. The moderate space penalty for
representing declarative HSII knowledge in HSP is cause for concern since HSII does
contain many large declarative knowledge structures. Even more serious concern arises
over space inefficiency of the global HSP working memory, since it =■ ust be used in place
of large, highly optimized local working memories that are typical in HSII KSs. HSP's lack
of local working memory also causes a large loss of time efficiency because of greater
creation/read/write costs and heavier use of data-directed control in global WM. HSP's

Page 106 Conclusion Chapter 7

large time efficiency handicap (two to three-and-a-half orders of magnitude) exists in spite
of efficiency mechanisms which make HSP comparable in time efficiency to several other
PSAs.

Some of the time efficiency handicap can be made up through increased ^arallel'sm.
An additional source of parallelism, called intra-KS parallelism, results from HSP's smaller
knowledge unit sire. Intra-KS parallelism is due mostly to parallel evaluation of low-level
alternative conditions rather than true parallel paths of computation within a KS (although
the latter makes a small contribution). The effect on a full KS configuration is; estimated
conservatively to be a half order of magnitude increase in parallelism.

Except for the added parallelism, only one positive reason for using HSP has been
revealed: help with the small address problem. Multi-micro and multi-mini processor« such
as C.mmp, for which the small address problem is an almost inevitable fact of life, are
currently rare. But there is some chance they wil; become a dominant architecture. If so,
solutions to the - mall address problem will be much in demand, and this could be a major
impetus for use of PSAs. Other positive features of the HSP architecture may come from
aspects not explored by this thesis. The following section identifies several candidates.

'•

Chapter 7 Conclusion Page 107

7.3 Questions for a Continued Evaluation

This section presents several important questions which have emerged from the
current study. These questions are ones that need to be answered before the central
question of the thesis can be finally resolved. Given the current state of the comparison,
in which HSP fares poorly against HSU, some alleviation of inefficiencies or additional
positive factors are sorely needed if the balance is to swing back toward HSP. Sources of
such help may exist in the following list, but it is not possible to say for certain from our
current state of understanding. Figure 7.2 gives a preview of the questions, after which
each is remarked on briefly.

1. Can HSII KSs that heavily rely on local efficiency ultimately be made tractable in HSP?
2. Is the distributed control of directionality as dictated by a PSA feasible?
3. Can a significant improvement in ease of augmentation be realized in a PSA?
4. Do there or can there exist HSII KSs which cannot be represented adequately in HSP?
5. Do there exist situations that require the inhomogeneity of representation in HSP?
6. Is the level of individual productions right for performance analysis?
7. Do the simple language and small size of HSP productions make them more readable?
8. Can the HSP architecture be augmented with explicit WM locking if necessary?
9. Can a full HSP KS configuration productively use 50-100 processors?

Figure 7.2 Some remaining questions

i. Can HSII KSs that heavily rely on local efficiency ultimately be made tractable in HSP?

We have seen that the bulk of HSP's efficiency handicap relative to HSII comes from
HSP's lack of local working memory and control. It is important to make some inroads on
this handicap if HSP is to be useful, and several possibilities present themselves. First,
optimization in the HSP kernel of the data-directed invocation and WM access mechanisms
would not be difficult. But it would contribute only a modest improvement (perhaps a 50^
overall speedup), which would not make a noticeable dent in the handicap of several
orders of magnitude.

A second possibility, though one we would prefer not to use since it subverts some of
the advantages of PSAs, is to permit productions to have complex actions with their own
conditionality and local working memory. This is moving toward the large knowledge unit
size of HSII. Perhaps there is some middle ground that recovers a large chunk of
efficiency without sacrificing the benefits of a PSA (themselves poorly understood as yet).

There is a speculative possibility for regaining efficiency which entails breaking away
from the close HSII-HSP correspondence purposely maintained in the thesis research.
Perhaps the HSII KSs which do rely heavily on local efficiency could be restructured
drastically to better suit the recognition-oriented PSA. There is a hint of a precedent for

Page 108 Conclusion Chapter 7

this in the history of HSII. Before the advent of the WIZARD procedure for word
verification (one of the heavy use s of local operations), there existed the WOMOS and
POSSE KS modules which provided the same global function. These KSs were more
recognition-oriented than WIZARD. Unfortunately, they were inherently much less efficient
than WIZARD, so It is unlikely they would even be an improvement over WIZARD in HSP
versions.

One final idea, aR&'n highly speculative, is to "compile" many PS cycles into one by
combining production sequences into single large productions.13 This would eliminate data-
directed invocation and creation/deletion of control elements which mediate between the
multiple cycles. In HSP this would cause a large increase in the number of productions,
with high structural redundancy, but a compilation scheme such as OPS uses might solve
this problem.

2. Is the distributed control of directionality as dictated by a PSA feasible?

Claims have been made that PSAs are unsuitable for representation of directionality
control [Mostow and Hayes-Roth, 1978]. Thus it is incumbent upon us to prove them
wrong if HSP is to survive its comparison with HSII. HSII has a specialized focussing
mechanism which operates with global knowledge of the state of the computation. In HSP
we must show (if possible) that the requisite global state information can be represented
in WM, and continually updated by a set of added productions; and that task productions
can be made to schedule themselves with additional condition elements sensitive to this
representation of global state. If we cannot accomplish this, the conclusion that HSP is
inadequate seems unavoidable. One difficulty that might be encountered is coordination of
the global-state-maintaining productions with the task productions; the former are logically
at a meta-level, yet are mixed in at the same level with the latter.

3. Can a significant improvement in ease of augmentation be realized in a PSA?

Ease of augmentation is one of the most promising aspects of a PSA, so we need to
show a significant advantage here to balance negative aspects such as efficiency. One
could propose case studies of augmentation in iterating HSP KSs. But a better strategy is
to await results from related efforts such as the Instructable PS project [Rychener and
Newell, 1978]. HSP's current architecture, lacking conflict resolution, may not properly
support augmentation. If necessary, conflict resolution can be added to HSP, at the risk of
sharply reduced parallelism.

[13] One difficuMy we foresee it (' i< the 'n-cycle delay" mechanism used in HSP will prevent compiletton of thos*
cycles since (he sequentially is essential. There may be ways around this, perhaps by adding more power to
HSP to make the n-cycle delays unnecessary. It is not clear that conflict resolution would work properly with

these large productions.

Chapter 7 Conclusion Page 109

4. Do there or can there exist HSII KSs which canaot be represented adequately in HSP?

Since there are about 20 HSII KSs which have not been translated to HSP, plus a
virtually open-ended set of others which might conceivably be added to HSII, our evidence
for adequacy is incomplete. Particularly suspicious are KSs such as WOSEQ and the new
SASS, which use highly specialized local data structur.-s. The current belief is that HSP is
adequate for these, though inefficient. A more thorough HSII-HSP evaluation requires
evidence for this belief.

5. Do there exist situations that require the inhomogeneity of representation in HSP?

The HSP architecture is better suited than HSII to representation of inhomogeneous
knowledge, e.g., knowledge containing rmny special cases. HSII's strong point is
homogeneous encodings; when it is forced out of these it must fall back on more expensive
and ad hoc representations. This could turn into a strong advantage for HSP if the drive
for improved performance pushed in the direction of inhomoganeity. This is uncertain at
this point, but a weak argument can be made that as a system is extended and tuned it
must necessarily incorporate more and more special case knowledge.

6. Is the Level of individual productions right for performance analysis?

Performance analysis at the level of productions can be accomodated easily in HSP.
The only issues are whether that level is a useful one (it is perhaps loo low), and whether
performance analysis at higher levels (always necessary) is made more difficult in a PSA.
These issues can be resolved only by experience with larger KS configurations in HSPi the
current two-KS configuration is too small to provide any significant insight. One possibility
is that special-purpose productions can be added to handle the higher-level performance
analysis, much in the same way that global state is to be maintained for directionality
control.

7. Do the simple language and small size of HSP productions make them more readable?

The easier it is to characterize the knowledge content of a KS, the better (e.g., for
communication with others in the scientific community). HSP productions seem to be much
preferable to SAIL procedures: individual productions can be studied, and production
counts are illuminating. But it is not so simple. There is the matter of control: productions
can have complex interrelationships not at all apparent in their outward structure.
Furthermore, much important HSII knowledge is in tables or networks, which are fine to
read in their naked form. Obviously, more experience is required to answer this question.

Page 110 Conclusion Chapter 7

8. Can the HSP architecture be augmented with explicit WM locking if necessary?

The point, has been made that HSP's synchronization of WM access cannot currently
extend over more than a single PS cycle. I.e., HSP has nothing HKe the ability in HSII of a
KS obtaining arbitrarily long exclusive access io some part of global working memory.
This more complete locking facility may turn out to be essential for HSP, so we must ask
whether it can be added without destroying the architecture's positive features. Such an
addition seems to require fundamental changes, such as explicit locking and unlocking
operations as new action primitives, and possible delaying of evaluation for "blocked"
productions. These changes seem feasible, but their success is by no means assured.

9. Can a fall HSP KS configuration productively use 50-100 processors?

THe HSP simulator predicted moderate utilization of up to 50 processors with the two-
KS configuration operating on a small fragment of input utterance. But there is a good
prospect for much higher utilizations in a full KS configuration operating on a full
utterance. This prospect makes a CM* [Swan, Fuller and Siewiorek, 1977] version of HSP
attractive, but the poor overall performance of HSP relative to HSII makes such a version
pointless for the time being.

7.4 Contributions

The contributions of this thesis come in three major categories:

First, of course, is the evaluation of a PSA for HSII ~ the central goal of the research.
A partial evaluation is presented, focussing on the problems of representational adequacy
and space and time efficiency, which are incidentally some of the least promising for a
PSA. From this vantage point, we ask questions that define appropriate directions for a
continuation of the evaluation. Several of these directions hold promise for PSAs such as
HSP. The partial evaluation is unfavorable for HSP, but at least we have quantified it so
that a complete picture can be fit together as additional questions are answered.

We provide an enhanced understanding of HSII, a system which is a highly visible and
important contribution to artificial intelligence, and thus worth knowing more about. By
investigation through HSP of marked alternatives to HSII's philosophy, we shed light on li.
For example, we contribute a better understanding of HSII's use of local memory and
control for efficiency; we add force to the question of whether HSII could increase
parallelism with greatly reduced or non-existent Blackboard synchronization, and possibly
a decrease in knowledge unit size; and we call into question (though modestly) the strong
belief that directionality control requires a separate, specialized mechanism.

We provide another data point for the applicability of PSAs to artificial intelligence
systems. The significant aspect of the speech knowledge-sources that distinguishes speech

Chapter 7 Conclusion Page 111

understanding from the domains studied by Rychener [1976] is the heavy use of
declarative knowledge structures.

We demonstrate several novel features which may be of use to designers of PSAs. We
show that permitting multiple firings per PS cycle has appeal (at least for some tasKs), and
that eliminating conflict resolution does not necessarily cripple; that writing productions to
contain explicit conditions on changes is a simple way to avoid repeated firing, and has
efficiency benefits as well; that an attribute-value structure for WM and condition
elements adds a useful bit of flexibility; and finally, that allowing WM elements to contain
explicit references to each other dramatically cuts WM searching during evaluation.

Finally, we show that it is possible to obtain meaningful comparisons of related but
different complex syst TS. The field of artificial intelligence could benefit from more
comparisons of this sort.

• ■

 -r- «* "^iSS*!!*

Page 112 Conclusion Chapter 7

-VAI.» -•'• U *»<k j.,— , - _ 'A.fc ill ! '~i ~

■•

References Page 113

References

Bernstein, M. (1976), "Interactive systems research: Final report". Technical Report TM-
5243/006/08, System Development Corporation, Santa Monica.

Brooks, R. (1975), "A model of human cognitive behavior in writing code for computer
programs", Ph.D. Thesis, Computer Science Department, Carnegie-Mellon University.

CMU Speech Group (1977), "Speech understanding systems: Summary of results of the
five-year research effort", (second version), Technical Report, Computer Science
Department, Carnegie-Mellon University. •

CMU Speech Group (1976), "Working papers in speech recognition IV: The Hearsay-II
system", Technical Report, Computer Science Department, Carnegie-Mellon University.

Cronk. R. and L Erman (1976), "Word verification in the Hearsay-II speech understanding
system", in [CMU Speech Group, 1976].

Davis, R. (1976), "Applications of meta-level knowledge to the construction, maintenance,
and use of large knowledge bases", Ph.D. Thesis, Memo AIM-271, Artifick »»lligence
Lab, Stanford University.

Davis, R. and J. King (1975', "An overview of production systems", Report STAN-CS-75-
524, Computer Science Department, Stanford University.

Erman, L and V. Lesser (1975), "A multi-level organization for problem solving using many
diverse cooperating sources of knowledge", Proc. 4th UCA1. pp.483-490.

Farley, A. (1974), "VIPS: A visual imagery and perception system; the result of a protocol
analysis", Ph.D. Thesis, Computer Science Department, Carnegie-Mellon University.

Feigenbaum, E. A., B. G. Buchanan and J. Lederberg (1971), "On generality and problem
solving: a case study using the DENDRAL program". Machine Intelligence 6, Edinburgh
University Press. ,

Fennell, R. (1975), "Multiprocess softw2re architecture for AI problem solving", Ph.D.
Thesis, Computer Science Department, Carnegie-Mellon University.

Fennell, R, and V. Lesser (1977), "Parallelism in AI problem solving: a case study of
Hearsay II", IEEE Transactions on Computers C-26. pp.98-111.

Forgy, C. (1978), "A production system monitor for parallel computers", Technical Report,
Computer Science Department, Carnegie-Mellon University.

Forgy C. and J. McDermott (1977), "OPS: a domain-independent production system
language", Proc. 5th IJCAI. pp.933-939.

•^«SSBT»

Page 114 References

Fuller, S.H. (1976), "Price/performance comparison of C.mmp and the PDP-10", IEEE/ACM
Symposium on Computer Architecture. (Jan 1975), pp.195-202.

Hayes-Roth, F. (1973), "A structural approach to pattern learning and the acquisition of
classificatory power", Proc. 1st Inter. Joint Conf. on Pattern Recognition.

Hayes-Roth, F., L Erman and V. Lesser (1976), "Hypothesis validity ratings in the Hearsay-
II speech understanding system", in [CMU Speech Group, 1976}

Hayes-Roth, F. and V. Lesser (1977), "Focus of attention in the Hearsay-II speech
understanding system", Proc. 5th 1JCAI. pp.27-35.

Hayes-Roth, F. and DJ. Mostow (1975), "An automatically compilable recognition network
for structured patterns", Proc. 4th IXAI. pp.246-251.

Hayes-Roth, F., DJ. Mostow and M. Fox (1977), "Understanding speech in the Hearsay-II
system", in L. Bole (ed.). Natural LanRuage Communication with Computers. Springer-
V-rlag.

Hydra group (1977), "Hydra addressing specifications", unpublished.

Klahr, D. (1973), "A production system for counting, subitizing, and adding", in W.C. Chase
(ed.). Visual Information Processing. Academic Press, pp.527-546.

Lesser, V. (1975), "Parailel processing in speech understanding: a survey of design
problems", in [Reddy, i975], pp.481-499.

Lesser, V. and L. Erman (1977), "A retrospective view of the Hearsay-II architecture", Proc.
5th IXAI. pp.790-80C.

Lesser, V. and R. Fennel) (1977), "Parallelism in artificial intelligence problem solving", in
[CMU Speech Group, 1977}

Lesser, V., R. Fennell, L. Erman and D.R. Reddy (1975), "Organization of the Hearsay-II
speech understanding system", IEEE Trans, on Acoustics. Speech and Si&na[
Processing, vol. ASSP-23, pp. 11-23.

Lesser, V. and R. Suslick (1977), C.mmp version of Hearsay-II, private communication.

Lowerre, B. (1976), "The HARPY speech recognition system", Ph.D. Thesis, Computer
Science Department, Carnegie-Mellon University.

Marathe, M. (19/7) "Performance evaluation at the hardware architecture level and the
operating system kernel.level", Ph.D. Thesis, Computer Science Department, Carnegie-
Mellon University.

McDermott, J. and C. Forgy (1978), "Production system conflict resolution strategies", in
[Waterman and Hayes-Roth, 1978}

References Page 115

McDermott, J., A. Newell and J. Moore (1978), "The efficiency of certain production system
implementations,^ in [Waterman and Hayes-Roth, 1978].

McKeown, D. (1977), "Word verification in the Hearsay-II speech understanding system",
Proc. 1977 IEEE Conf. on ASSP. Hartford, pp.795-798.

Medress. M., F. Cooper, J. Forgie, C. Green, D. Kiatt, E. Neuburg, A. Newell, M. O'Malley, D.R.
Reddy, B. Ritea, J. Shoup-Hummel, D. Walker and W. Woods, "Speech understanding
systems: Report of a steering committee", Sigart Newsletter No. 62. (Apr 1977), p.4-8.

Moore, J. and A.. Newell (1974), "How can Merlin understand?", in L Gregg (ed.), Knowledge
and Cognition. Erlbaum.

Moran, T. (1973), "The symbolic imagery hypothesis: An empirical investigation via a
production system simulation of human behavior in a visualization task", Ph.D. Thesis,
Computer Science Department, Carnegie-Mellon University.

Mostow, DJ. and F. Hayes-Roth (197S), "A production system for speech understanding", in
[Waterman and Hayes-Roth, 1973].

Newell, A. (1972), "A theoretical exploration of mechanisms for encoding the stimulus", in
A.W. Melton and E. Martin (eds.), Coding Processes in Human Memory. Winston and
Sons, pp.373-434.

Newell, A. (1973), "Production systems: models of control structures", in W. Chase (ed.),
Visual Information Processing. Academic Press.

Newell, A. (1975), "A tutorial on speech understanding systems", in [Reddy, 1975], pp.3-54.

Newell. A., J. Barnett, J. Forgie, C. Green, D. Klatt, J.C.R. Licklider, J. Munson. D.R. Reddy and
W.A. Woods (1973), Speech Understanding Systems: Final Report of. a Study Group.
North-Holland/American Elsevier.

Newell, A., D. McCracken and G. Robertson (1977), "L*: an interactive, symbolic
implementation system", Technical Report, Computer Science Department, Carnegie-
Mellon University.

Newell, A. and J. McDermott (1975), "PSG manual", Technical Report, Computer Science
Department, Carnegie-Mellon University.

Newell, A. and H. A. Simon (1972), Human Problem Solving. Prentice-Hall.

Reddy, D.R. (ed.) (1975), Speech Recognition Invited Papers of the IEEE Symposium.
Academic Press.

Reiser, j. (1976), "SAIL", Memo AIM-289, Artificial Intelligence Lab, Stanford University.

Rychener, M. R. (1976), "Productin- systems as a programming language for artificial
intelligence applications", Ph.D. lesis. Computer Science Department, Carnegie-Mellon
University.

/ . v

Page 116 References

Rychener, M., C. Forgy, P. Langley, J. McDermott, A. Newell and K. Ramakrishna (1977),
"Problems in building an instructable production system", Proc. 5th 1JCA1. p.337.

Rychener, M. R. and A. Newell (1978), "An instructable production system: basic design
issues", in [Waterman and Hayes-Roth, 1978].

Shortliffe, E.H. (197^), "MYCIN: A rule-based computer program for advising physicians
regarding anti-microbial therapy selection", Ph.D. Thesis, Computer Science
Department, Stanford University.

Smith, A.R. (1976), "Word hypothesization in the Hearsay-II speech understanding system",
IEEE Int. Conf. on Acoustics. Speech and Signal Processing, pp.549-552.

Swan, R., S. Fuller and D. Siewiorek (1977), "Cm*: a modular, multi-microprocessor", AFIPS
Conference Proceedings. Vol. 46, National Computer Conference, pp.637-644.

Walker, D. (ed.) (1976), "Speech understanding research: Final technical report", Stanford
Research Institute.

Waterman, D. (1975), "Adaptive production systems", Proc. 4th IX A I. pp.296-303.

Waterman, D. and F. Hayes-Roth (eds.) (1978), Pattern-Directed Inference Systems.
Academic Press.

Winograd, T. (1972), Understanding Natural Language. Academic Press.

Winograd, T. (1975), "Frame representations and the declarative/procedural controversy",
in D. Bobrow and A. Collins (eds.). Representation and Understanding. Academic Press,
pp. 185-210.

Woods, W. et at. (1976), "Spee h understanding systems: Final technical report", BBN
report 3438, Bolt Beranek and Newman, Inc., Cambridge.

Wulf, W.A. and C. G. Bell (1972), "C.mmp ~ A multi-mini-processor", Proceed'ngs of the Fall
Joint Computer Conference, pp.765-777.

Wulf, W.A., E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson and F. Pollack, "Hydra: the
kernel of a multiprocessor operating system", Comm. of. the ACM. 17, 6 (June 1974),
pp.337-345.

Wulf, W.A. and S. Harbison (eds.) (1978), "Reflections in a pool of processors: An
experience report on C.mmp/Hydra", Technical Report, Computer Science Department,
Carnegie-Mellon University.

Young, R. (1973), "Children's seriaiion behavior: A production-system analysis", Complex
Information Processing No. 245, Department of Psychology, Carnegie-Mellon
University. Also available from Department of Computer Science.

 , — ..„.r-,-— -'■"-- —

Appendix A HSP Specifications Page 117

Appendix A

HSP Specifications

> Uorking memory (UM) is an unordered collection of UM elements (UNEs)

> There is no architectural limit to the size of UM

> Hfl elements

> A UM element lUHE) is an association list structure of
pairs: field identifier, field value
> E.g. < Idl/vall Id2/val2 >
> These are very similar to Hayes-Roth's Parameterized

Structural Representations (PSRs) [Hayes-Roth, 1973]

> The field identifier may be defaulted, in which case
the field is identified positionally from the start of
the UME (e.g. the third field value specified uith a
defaulted field identifier is taken as the third field
from the start)

> Field values may be named symbols, integers, references
to other UMEs, or single-level lists of the preceeding
i tems

> Speech knowledge units (e.g., syllables, words) are
defined in lexicons, which are themselves represented
by symbols (e.g., SYL, WRD)
> The knc i dge units are represented externally by

a "..." notation, e.g., "BEEF" for the
word 'beef

> The most recent previous occurrence of a lexicon
symbol determines which lexicon is to be used

> The external representation of a knowledge unit is
translated internally to an integer, namely the
index of the item in its lexicon

> There are two particularly common forms of UM elements:
hyps (hypotheses) and links (support links between
hypotheses)

> Hyps ülways begin with HYP as the first field value,
the lexicon of the hyp second, and the knowledge
unit symbol third (these fields are positionally

Page 118 HSP Specifications Appendix A

defined)

> E.g. <HYP WRO "BEEF'^
Hyps also have a begin time field (which is a list
of two integers: begin time and begin range) and an
end time field (similar to begin time)

> E.g. <HYP WRD "BEEF" BTIME/(20 3) ETIME/(60 0) >

Hyps have an upper validity field (UVLD) which holds
validity propagated upward from supporting hyps, a
lower validity field (LVLD) which holds validity

propagated downward, and a combined validity

field (YLD); all validity fields have single
integers between -100 and 100 as values

Hyps also have an upper links (ULNKS) field which is
a list of references to all the links which have the
hyp as their lower hyp; and similarly, a list of

alternative supporting links (LINKS) which are links
having the hyp as their upper hyp
Links always begin with LNK as the first field

value, the lexicon of the lower supporting hyp
second, followed by a reference to the upper
(supported) hyp, followed by a list of references to
the sequence of lower (supporting) hyps, followed by
both upper and lower implications (Integers between
-100 and 100 representing the upward and downward
strength of the tupport)
> E.g. <LNK WRD UHYP/H23 LHYPS/(H17 H18) UIMP/90

LI HP/30 > where H23 must be a word hyp

> Production memory (PM) is an unordered collection of all
productions existing in the system

> Productions consist of a sequence of condition elements

(CEs) followed by the -> symbol, followed by a sequence
of action elements (AEs)

> A subI ist of condition elements may take the place of a
single element, to arbitrary depth; the sublist structure
is transparent to the production interpreter
> This transparent sublist facility is merely for

allowing naming and/or sharing of CEs among productions

> Condition elements

> A CE is an asscciation list structure closely
paralleling the UHE structure

Appendix A HSP Specifications Page 119

> Field values of a CE may be the same as in UKEs, except
that a variable or the special symbol * may also appear

in place of any of the other possible items
> By convention, any external symbol beginning with

a 8 is recognized as a variable

> A CE may also be the symbol NOT followed by an

association list structure as above
> Or a CE may be a variable, followed by the symbol =,

followed by an association list
> Or a NOT followed by all three of these

> Condition element match

> A CE is matched against a UME field for field from left _
to right for positional fields, otherwise by
corresponding field identifiers -
> Corresponding named symbols must satisfy a symbol

equali ty test
> Corresponding integers must satisfy an integer

equali ty test
> Corresponding references to UflEs must refer to the

same UME
> Corresponding lists must match in every

corresponding element (it is necessary that the

lists be the same length)

> The first occurrence (in left to right order) of a
variable in a condition indicates a variable binding is
to occur, while successive occurrences of the same
variable indicate a match against the variable's

binding i s to occur

> The special symbol * will successfully match any

element -it corresponds to

> The special symbol ** within a list will match
zero or more items CT the list
> Only one occurrence of ** is permitted in a list

> E.g. the variable «LH in LHYPSA* SLH **)
picks out the second lower hyp from the list if the

list has two or more hyps
> E.g. LHYPS/(8LH1 ** 8LH2) will pick out the first

and last if the list has at least two hyps

> A failure of the match at any point signals failure

of the entire CE match

> Special match predicates may be composed from other

Page 120 HSP Specifications Appendix A

predicates uith AND, OR and NOT enclosed within []

> The binary predicates (> and < for integers)

must be written within [] to delineate the

second argument

> E.g. [< 73]

> The predicate = may be used inside [] to obtain
the standard match operation for the particular
field

> E.g. fI did/I=3] is the same as fidid/3 , but

f ldid/[3] wiI I not work

> NOT may be used within [] to reverse the sense
of ano'ther predicate

> E.g. [NOT < 60] , [NOT = 6]

> AND may be usedt to create conjunctive tests

> E.g. ETIME/(4[=8ET AND > 8BT+12 1 0)

where the [...] applies to the first element

of the ETIME list

> OR may be used to create disjunctive tests

> E.g. fldid/[=1 OR =2 OR =3]

> The binary infix arithmetic operators (+, -t *,

/, MAX, MIN, ABS) may be used with integers and

and integer variables within []

> Inner levels of [] denote nesting of
arithmetic expressions

> E.g. [< 8BR+3] , [> [«V*SI]/100]

> Condition and action procedures

> As mentioned above, CEs can be grouped into lists
and named, and then used in multiple productions
without duplicating the space
> These might be called parameter less procedures

> A facility also exists for condition procedures with
parameters
> This permits much greater sharing across productions

since the use in each sharing production need not be
identical, but only the same modulo a set of parameters

> The definition format is:

procnamet (CPROC (Svarl i*var2 ...) eel ce2 ce3 ...)

where eel ee2 ce3 ... are.CEs containing instances of

the variables Svarl 8var2 ...

> The format of a call is simply:
parml parm2 ... procname in a condition

> A similar facility exists for actions using APROC,

*•

..

Appendix A HSP Specifications Page 121

except that a balancing APROC, is also needed
> E.g. procnamei (APROC (Svarl ...) ael ae2 ... APROC.)

> Condi t ion match

> By convention the first CE in a production refers
to a symbolization of a change which must have
occurred in the previous cycle of the PS
> E.g. <M0D H23 VLD> — a change to the validity of

hyp H23

> A backtracking mechanism in the production interpreter
attempts all possible matches of CEs to UMEs, and
the action will be executed once for each successful match
> Thus a single production may fire multiple times in

a s i ngIe eye 1e

> Each successive ZE is matched either against the entire
Un, or if the CE is of the form Svar =<...> and the
variable Svar uas assigned in a previous CE of the
same condition, the CE is matched only against the single
UriE (or list of UMEs) bound to 8var

> Uhen a CE contains a NOT, it will evaluate to true only
if all possible matches against UMEs fail; thus there
are no multiple satisfying assignments possible for a
NOT CE
> It is meaningless to attempt to bind a variable

wi thin a NOT CE

> Action elements

> Action elements (AEs) are simple calls to one of the
action primitives listed below

> UMEs and subelements which were bcund to variables
during the condition match are designated to the AEs
by passing the variables as parameters

> AEs are written in the same way as UMEs or CEs using
< >, giving a form of prefix function notation

> All the AEs produce as a side effect a symbolization
of the change
> This is used to drive the following PS cycle

> <NEW <. ..> > or <NEW 8wine=<...> >

'*''*''•■■■■■■•BBBWäP^ *■' »^i**! i i mi; V, .--^^^^^ Wü^*^^^

Page 122 HSP Specifications Appendix A

> Creates a new UflE as specified by the
attribute-value structure <...>

(and binds it to variable Syrne if present)

> <DEL 8ume>
> Deletes the UME bound to variable 8ume

> <M0D 8ume fldld neuval>
> Replaces the field specified by field identifier

fldld of the UtlE bound to variable Swtrie with

neuval
> Ui II also create a new field in 8wme if no field

with identifier fldid already exists

> <M0D,ADD 8wrne fldid 8wmeref>
> Adds a reference to the UME bound to 8wffleref to

the beginning of the list of references that is

field fldid of the UflE bound to 8wme

> Uill also create a new field in 8wme if no field

with identifier fldid already exists

> <M0D.ADDE 8wme fldid 8wmeref>
> Same as MOD,ADD except adds to the end of the

list rather than the beginning

> <M0D,REP 8wme fldld 8oldwffle 8newwine>

> Replaces a reference to 8oldwme by a reference to

Sncwume wherever it occurs in the list that is

field fldid of 8ume

> <M0D.DEL 8wme fldld 8wmeref>
> Similar to MOD.ADD except deletes the reference

from the I ist
> Hill also delete the field if the list becomes

empty by deleting the reference
> Thus fldid/O should never be URrd in a

condition, but rather NOT < ... fldld/* ... >

> Examples
> <NEM 8L= < LNK SYL UHYP/8H LHYPS/(8M1 «M2) IMP/90 > >

> Creates a new link to a word hyp bound to 8M,
from the sequence of lower syllable hyps uound to

8M1 and 8M2, with implication - 98, and binds the

new link to variable 8L

> <H0D 8HL BTIME 8BT>
> Replaces the current begin-time of hyp IHL (list

of time integer and time range integer) with the

time I ist bound to 8BT

> <M0D.DEL 8LH ULNK 80L>
> Deletes the reference to link 80L from the ÜLNK

field of hyp 8LH

 _ ii.. ■ ■ —■——*,

Appendix A HSP Spec!ficat ions Page 123

> The binary infix arithmetic operators (+, -, *, /, MAX,,

HIN, ABS) may be used within [] when necessary to

compute an inteo^r for new value
> E.g. <M0D 8LK LYLD [[8I*SLY]/100] >

> PS control

> See Section 5.1 of the thesis (under "Parallelism in
the HSP Control Cycle") for an explanation of global

control in HSP

■"■— ■—— ■v.--

Page 124

_ v-

Appendix B Sample HSP Productions Page 125

Appendix B

Sample HSP Productions

Below is an example of HSII declarative Knowledge encoded as HSP productions — a
table of segment vowel probabilities. There is a separate production for each table entry
(PD.VP1 through PD.YP43), though they all use the condition procedure POM.YPRB to save
space (see the end of Section 3.1.4). (There are 43 altogether — not all are shown
below). POM.YPRB takes four parameters: the identity of the speech segment and its a
priori vowel probability for each of three vowel types (A, I, U). (Note the order of the
parameters is reversed from declaration to call). The productions trigger on a new
segment hyp (hypothesis represented as a Working Memory element) and store the three
probabilities as new fields of the hyp if the segment identity matches the one in the
production. The Production Memory index has these productions indexed by four levels:
NEW, HYP, SEG, and "xx" (the segment identity), so only the single correct production need
be evaluated when a new segment hyp appears.

POM.YPRBJ < CPROC (8UYP 81YP 8AYP 8X)
< NEW 8S >
8S= < HYP SEG 8X >

->

< MOD 8S AYPRB 8AYP >
< MOD 8S IYPRB 81 YP >
< MOD 89 UYPRB 8UYP > >

PD.YP1 : • MM 0 0 0 POM.YPRB)
PD.YP2 J ("K" 0 0 0 POM.YPRB)
PD.YP3 I < "P" 0 0 0 POM.YPRB)

• t •

PD.VP32 t ("EY" 16 80 0 POM.YPRB)
PD.YP33 : ("EH" 30 39 17 POM.YPRB)
PD.YP34 : ("IH" 16 50 25 POM.YPRB)
PD.YP35 I ("IX" 0 100 0 POM.YPRB)
PD.YP36 : ("IY" 0 48 29 POM.YPRB)
PD.YP37 : ("EL" 15 0 48 POM.YPRB)
PD.YP38 : ("ER" 11 20 33 POM.YPRB)
PD.YP39 ! ("OW" 24 11 58 POM.YPRB)
PD.YP40 : < "UH" 21 30 33 P'JM.YPRB)
PD.YP41 l ("UW" 0 0 49 POM.YPRB)
PD.YP'12 J ("UX" 0 0 0 POM.YPRB)
PD.YP43 » ("AY" 17 39 0 POM.YPRB)

——_

Page 126 Sample HSP Productions Appendix B

The three productions below (PD.CVPRBl, 2 and 3) calculate tho combined vowel
probabilities of each type (A, I, U) for an "option-seg". An option-seg is a hyp
representing the combination of one to a maximum of three (by convention) alternative
segments in the same time interval. The cases of there being one, two or three alternative
segments are handled separsfHy by the three productions. (This can be considered a
representational weakness of HSP. An HSU KS can encode this much more concisely since
it can handle an arbitrary number of alternalives with a single procedure). The
pdrameterless condition procedures VPRB.OS and VPRB.Sl, 2 and 3 are used just to save
spaco. Note the complex arithmetic expressions within the actions to compute the combined
vowel probabilities based on Kach alternative segment's vowel probabilities and normalized
rating.

VPRB.OS : (< MOD 8S [=NRAT OR =AVPRB OR =IVPRB OR =UVPRB] >
8S= < HYP SEG 0SEGLNK/80S >)

VPRB.Sl : (8S1= < AVPRD/8AVP1 IVPRE/8IVP1 UVPRB/8UVP1 NRAT/8NR1 >)
VPRB.S2 l (8S2= < AVPRB/8AVP2 IVPRB/8IVP2 UVPRB/8UVP2 NRAT/8NR2 >)
VPRB.S3 : (8S3= < AVPRB/8AVP3 IVPRB/8IVP3 UVPRB/8UVP3 NRAT/8NR3 >)

PD.CVPRBl i (

PD.CVPRB2 « (

PD.CVPRB3

MOD
MOD
MOO
s <

< MOD SOS
< MOD 80S
< MOD 80S

AVPRB
IVPRB
UVPRB

VPRB.OS
80S= < SEGS/(8S1) >
VPRB.Sl

->

< HOD 80S AVPRB 8AVP1
< MOD 80S IVPRB 81VP1
< MOD 80S UVPRB 8UVP1

VPRB.OS
80S= < SEGS/(8S1 8S2) >
VPRB.Sl
VPRB.S2

->

80S AVPRB [[
80S IVPRB [[
80S UVPRB [[

VPRB.OS
80S= < SEGS/(8S1
VPRB.Sl
VPHB.S2
V';

JRBaS3
->

[[[8AVP1*8NR1]
[[[8IVP1*8NR1]
[[[8UVP1A8NR1]
)

[8AVP1*8NR11 +
t3IVPl*8NRl] +
[8UVP1*8NR1] +

[8AVP2*8NR2]
[81VP2*8NR2]
[8UVP2*8NR21

]/100
]/100
1/100

>
>

>)

8S2 SS3) >

+ [8AVP2*8NR23 +
+ [8IVP2*8NR2] +
+ [?UVP2*8NR2] +

[8AVP3*8NR3]
[8IVP3*8NR3]
[8UVP3A8NR3]

1/100 1 >
1/100] >
1/100 1 >

Appendix B Sample HSP Productions Page 127

Below there are three prodcriions (PD.GAP, PD.GAPL and PD.GAPR) which propagate
oegment "gaps" (missing segments represented as segment hyps with identity "-*) up
through the syllable and word levels (as "GAP" hyps at those levels). The three
productions trigger when the option-seg hyp for a segment gap appears in Working
Memory. The condition procedure NEHGAP merely tests for such a situation and sets up the
context into some variables.

For the interior of an utterance, PD.GAP applies, under condition that the gap must be
at least 15 time units long. PD.GAPL and PD.GAPR permit a gap shorter than 15 to be
propagated if it abuts the utterance-begin segment ("[") or utterance-end segment ("]"/.
Note that PD.GAPL and PD.GAPR must ensure that the segment is indeed shorter than 15,
else there might be a duplicate firing of one of them and PD.GAP. This is an example of
extra encoding that is necessary to prevent duplicate firings in the absence of a conflict
resolution mechanism in the architecture.

NEWGAP : (■< NEW 8QS >
80S= < HYP OSEG SEGSAJS) >
8S= < HYP SEG "-" BTIME/(8BT *) ETIME/(8ET *)

NEWGAPS: (-> < NEW 8M= < HYP SYL "GAP" BTIHE/(8BT 3) ETIHE/(«ET 3) > >
< NEW < LNK OSEG UHYP/8M LHYPS/(80S) UI HP/100 > >
< NEW 8W= <HYP WRD "GAP" BTIME/(8BT 3) ETIHE/OET 3)

IVLD/100 SYLNUM/1 > > •
< NEW < LNK SYL UHYP/8W LHYPS/(8H) UIHP/IOO > >)

PD.GAP : (NEWGAP
8S= < ETIMEA [> 8BT+15] *) >

->
NEWGAPS)

NEWGAP.E J <

PD.GAPL i (

PD.GAPR I <

NEWGAP
8S= < ETIMEA [NOT > 8BU15] *) >)

NEWGAP.E
< HYP SEG "I" ETIMEA8BT *) >
NOT < HYP WRD "GAP" BTIMEA8BT *) ETIHEA8ET *) >

->

NEWGAPS)
NEWGAP.E
< HYP SEG "]" BTIMEA8ET *) >
NOT < HYP WRD "GAP" BTIMEA8BT *) ETIHEA8ET *) >

->
NEWGAPS)

■

P" —- _

Page 128 Sample HSP Productions Appendiy 3

The productions below cooperate to identify those option-segs which have high
enough combined vowel probabilities to act as syllable "nuclei". There are two cla&sss of
nuclei (NUCs): strong and weak; and those option-segs that are neither must be Wisr^d
accordingly (for later reference). This happens in three consecutive PS cycles:

First, PD.SNUC will mark as NUC/STRONG an option-seg that satisfitJ the stror :
criteria (vowel probability greater than .3 and existence of an amplitude maximum, or MXixJ
hyp, which overlaps the option-seg). At the same time (i.e., also in the first cycled,
PD.FSNUC initiates an explicit 1-cycle delay by creating a special WM element <P0M
FSNUC option-seg> which will cause triggering on the following cycle. (Note this el«»- tnt
also records the relevant option-seg hyp).

On the following cycle, PD.WNUC reacts to the special element and tests whethe te
option-seg was marked STRONG on the previous cycle. If not, and if it satisfies the ak
criteria, it is marked as NUC/WEAK. In t. e meantime, PD.FWNUC creates another 1- :le
delay with,the element <P0M FWNUC option-seg>.

On the third cycle, PD.NONUC reacts to the new <P0M F»MJC optIon-seg> element
and tests whether the option segment has been marked as either STRONG or WEAK, and if
not marks it as NONUC/TRUE.

PD.FNUC, is the cleanup production. It deletes both kinds of special delay eürments in
the cycle after which they were created.

PD.ANUCL a^d PD.ANUCR monitor an "error" condition; namely the appearance of two
contiguous (in ime) NUCs. Their actions (encoded in the procedure ANUC.AOS) are actually
L* code (the underlying implementation language) which prints a diagnostic message. This
should be considered an expedient rather tha.r» part of the HSP architecture.

PD.SNUC I (< MOD 80S VPRB >
80S= < HYP OSEG VPRB/[> 30] BTIME/CSBT 0)

ETIME/(«ET 0) >
< HYP Mi BTIHE/([< SET] 0) ETIME/([> »BT] 0) >

->

< MOD SOS NUC STRONG >)

PD.FSNUC J (< MOD SOS VPRB >
S0S= < HYP OSEG >

->

< MEN < POM FSNUC 80S > >)

PD.WNUC » (< NEW $X >
SX= < POM FSNUC 80S >
NOT S0S= < NUC/* >
80S= < VPRB/[=8VP AND > 101 BTIME/CSBT 0)

Appendix B Sample HSP Productions Page 129

ETIMEA [=8ET AND > 8BT+12] 0) >
NOT < HYP OSEG ETIME/(5BT 0) VPRB/[NOT < 8VP] >
NOT < HYP OSEG BTIME/(8ET 0) YPRB/t NOT < 8YP] >
NOT < HYP OSEG ETIME/(8BT 0) NUCA >
NrJT < HYP OSEG BTIME/(8ET 0) NUC/* >

->
< MOD 80S NUC M1AK >)

f

PD.FWNUC J < < NEW 8X >
8X= < POM FSNUC 80S >

->

< NrW < POM FWNUC 80S > >)

PD.NONÜC : (< NEW 8X >
8X= < POM FWNUC 80S >
NOT 80S= < NUCA >

->

< MOD 80S NONUC TRUE >)

PD.FNUC. : (

ANUC.OS : (

ANUC.AOS i (

< NEW 8X >
8X= < POM [=FSNUC OR =FWNUC] >

->

< DEL 8X >)

< MOD 80S NUC [=STRONG OR =WEAK] >
80S= < HYP OSEG BTIME/<8BT 0) ETIMEASET 0) >)

$AOS= < NUC/I =STR0NG OR =WEAK] >
->

S-Adj NUCsi " WRHSP 80S PRHSP« SPACE2 8AOS PRHSP)

PD.ANUCL i (ANUC.OS
8A0S= < HYP OSEG ETIME/(8BT *) >
ANUC.AOS)

'•

PD.ANUCR i (ANUC.OS
8A0S= < HYP OSEG BTIME/(8ET *) >
ANUC.AOS)

